ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: The Qinghai-Tibet Plateau (QTP) is among the most sensitive ecosystems to changes in global climate and human activities, and quantifying its consequent change in land-cover land-use (LCLU) is vital for assessing the responses and feedbacks of alpine ecosystems to global climate changes. In this study, we first classified annual LCLU maps from 2001–2015 in QTP from MODIS satellite images, then analyzed the patterns of regional hotspots with significant land changes across QTP, and finally, associated these trends in land change with climate forcing and human activities. The pattern of land changes suggested that forests and closed shrublands experienced substantial expansions in the southeastern mountainous region during 2001–2015 with the expansion of massive meadow loss. Agricultural land abandonment and the conversion by conservation policies existed in QTP, and the newly-reclaimed agricultural land partially offset the loss with the resulting net change of −5.1%. Although the urban area only expanded 586 km2, mainly at the expense of agricultural land, its rate of change was the largest (41.2%). Surface water exhibited a large expansion of 5866 km2 (10.2%) in the endorheic basins, while mountain glaciers retreated 8894 km2 (−3.4%) mainly in the southern and southeastern QTP. Warming and the implementation of conservation policies might promote the shrub encroachment into grasslands and forest recovery in the southeastern plateau. While increased precipitation might contribute to the expansion of surface water in the endorheic basins, warming melts the glaciers in the south and southeast and complicates the hydrological service in the region. The substantial changes in land-cover reveal the high sensitivity of QTP to changes in climate and human activities. Rational policies for conservation might mitigate the adverse impacts to maintain essential services provided by the important alpine ecosystems.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: During the casting of high aluminum steel, the dramatic increase in the Al2O3/SiO2 ratio is inevitable, resulting in significant changes of the crystallization behavior, which would result in heat transfer and lubrication problems. Crystallization products and structure characterization of glassy CaO-SiO2-based mold fluxes with different Al2O3/SiO2 ratios were experimentally investigated using a differential scanning calorimetry technique and Raman spectroscopy. With increasing Al2O3/SiO2 ratios, the following results were obtained. The crystallization temperature and the crystallization products are changed. With increasing Al2O3/SiO2 ratios from 0.088 to 0.151, the crystallization temperature first increases greatly from 1152 °C to 1354 °C, and then moderately increases. The crystallization ability of the mold flux is strengthened. The species of the precipitated crystalline phase change from two kinds, i.e., Ca4Si2O7F2 and Ca2SiO4, to four kinds, i.e., Ca4Si2O7F2, Ca2SiO4, 2CaO·Al2O3·SiO2 and Ca12Al14O32F2, the crystallization ability of Ca4Si2O7F2 is gradually attenuated, but other species show the opposite trend. The results of Raman spectroscopy indicate that Al3+ mainly acts as a network former by the information of [AlO4]-tetrahedral structural units, which can connect with [SiO4]-tetrahedral by the formation of new bridge oxygen of Al–O–Si linkage, but there is no formation of Al–O–Al linkage. The linkage of Al–O–Si increases and that of Si–O–Si decreases. The polymerization degree of the network and the average number of bridging oxygens decrease. Further, the relatively strong Si–O–Si linkage gradually decreases and the relatively weak Al–O–Si gradually increases. The change of the crystalline phase was interpreted from the phase diagram and structure.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...