ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Stormwater urban drainage systems are typically designed in open channel flow. Pipe sewers must have enough capacity to transport maximum design flows for a given frequency of the project rainfall. The classic rational method or related procedures that are based on rational approaches are still currently used to a great extent, particularly for small urban drainage basins, and the pipes are frequently designed in uniform steady flow. Numerical integration of Saint-Venant equations for one-dimensional gradually varied unsteady flow allows the computation of waves’ progression along the pipes for given input surface hydrographs. This paper presents a comprehensive, systematic, simple, and original comparison between the peak flows that are achieved through simulation in unsteady flow using an implicit complete dynamic model, developed in the Laboratory of Hydraulics, Water Resources and Environment of Coimbra University, and those that are obtained with the classic rational method along urban drainage networks. Boundary conditions and some approximations typically considered in the methodologies are analyzed in detail. Classic rational approaches may underestimate the peak and design flows. Practical recommendations for the system design phase when rational approaches are used are also proposed. The need for indispensable requirements for suitable urbanization rules, intelligent management of surface runoff in urban basins, and control measures for the reduction of peak flows entering existing networks is confirmed and reinforced.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...