ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI  (3)
Collection
Publisher
Years
  • 1
    Publication Date: 2019
    Description: This study proposes a hybrid computational intelligence model that is a combination of alternating decision tree (ADTree) classifier and AdaBoost (AB) ensemble, namely “AB–ADTree”, for groundwater spring potential mapping (GSPM) at the Chilgazi watershed in the Kurdistan province, Iran. Although ADTree and its ensembles have been widely used for environmental and ecological modeling, they have rarely been applied to GSPM. To that end, a groundwater spring inventory map and thirteen conditioning factors tested by the chi-square attribute evaluation (CSAE) technique were used to generate training and testing datasets for constructing and validating the proposed model. The performance of the proposed model was evaluated using statistical-index-based measures, such as positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity accuracy, root mean square error (RMSE), and the area under the receiver operating characteristic (ROC) curve (AUROC). The proposed hybrid model was also compared with five state-of-the-art benchmark soft computing models, including single ADTree, support vector machine (SVM), stochastic gradient descent (SGD), logistic model tree (LMT), logistic regression (LR), and random forest (RF). Results indicate that the proposed hybrid model significantly improved the predictive capability of the ADTree-based classifier (AUROC = 0.789). In addition, it was found that the hybrid model, AB–ADTree, (AUROC = 0.815), had the highest goodness-of-fit and prediction accuracy, followed by the LMT (AUROC = 0.803), RF (AUC = 0.803), SGD, and SVM (AUROC = 0.790) models. Indeed, this model is a powerful and robust technique for mapping of groundwater spring potential in the study area. Therefore, the proposed model is a promising tool to help planners, decision makers, managers, and governments in the management and planning of groundwater resources.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: In this study, we estimate monthly variations of surface-water storage (SWS) and subsurface water storage (SSWS, including groundwater and soil moisture) within the Lower Mekong Basin located in Vietnam and Cambodia during the 2003–2009 period. The approach is based on the combination of multisatellite observations using surface-water extent from MODIS atmospherically corrected land-surface imagery, and water-level variations from 45 virtual stations (VS) derived from ENVISAT altimetry measurements. Surface-water extent ranges from ∼6500 to ∼40,000 km 2 during low and high water stages, respectively. Across the study area, seasonal variations of water stages range from 8 m in the upstream parts to 1 m in the downstream regions. Annual variation of SWS is ∼40 km 3 for the 2003–2009 period that contributes to 40–45% of total water-storage (TWS) variations derived from Gravity Recovery And Climate Experiment (GRACE) data. By removing the variations of SWS from GRACE-derived TWS, we can isolate the monthly variations of SSWS, and estimate its mean annual variations of ∼50 km 3 (55–60% of the TWS). This study highlights the ability to combine multisatellite observations to monitor land-water storage and the variations of its different components at regional scale. The results of this study represent important information to improve the overall quality of regional hydrological models and to assess the impacts of human activities on the hydrological cycles.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: We used a novel hybrid functional machine learning algorithm to predict the spatial distribution of landslides in the Sarkhoon watershed, Iran. We developed a new ensemble model which is a combination of a functional algorithm, stochastic gradient descent (SGD) and an AdaBoost (AB) Meta classifier namely ABSGD model to predict the landslides. The model incorporates 20 landslide conditioning factors, which we ranked using the least-square support vector machine (LSSVM) technique. For the modeling, we considered 98 landslide locations, of which 70% (79) were used for training and 30% (19) for validation processes. Model validation was performed using sensitivity, specificity, accuracy, the root mean square error (RMSE) and the area under the receiver operatic characteristic (AUC) curve. We also used soft computing benchmark models, including SGD, logistic regression (LR), logistic model tree (LMT) and functional tree (FT) algorithms for model validation and comparison. The selected conditioning factors were significant in landslide occurrence but distance to road was found to be the most important factor. The ABSGD model (AUC= 0.860) outperformed the LR (0.797), SGD (0.776), LMT (0.740) and FT (0.734) models. Our results confirm that the combined use of a functional algorithm and a Meta classifier prevents over-fitting, reduces noise and enhances the power prediction of the individual SGD algorithm for the spatial prediction of landslides.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...