ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: In view of the complexity of the energy system and its complex relationship with socio-economic factors, this study adopts the Long-range Energy Alternative Planning (LEAP) model, a technology-based, bottom-up approach, scenario-based analysis, to develop a systematic analysis of the current and future energy consumption, supply and associated Green House Gas (GHG) emissions from 2015 to 2050. The impact of various energy policies on the energy system in Hebei Province was analysed by considering four scenarios: a Reference Scenario (REF), Industrial Structure Optimization Scenario (ISO), Terminal Consumption Structure Optimization Scenario (TOS) and Low-carbon Development Scenario (LCD). By designing strategic policies from the perspective of industrial adjustment, aggressive energy structure policies and measures, such as the ISO and the TOS, and even more aggressive options, such as the LCD, where the percentage of cleaner alternative energy sources has been further increased, it has been indicated that energy consumption will have increased from 321.618 million tonnes of coal equivalent (Mtce) in 2015 to 784.88 Mtce in 2050 in the REF, with a corresponding increase in GHG emissions from 920.56 million metric tonnes (Mt) to 2262.81 Mt. In contrast, the more aggressive policies and strategies involved in the LCD, which combines the ISO with the policy-oriented TOS, can lower energy consumption by 50.82% and CO2 emissions by 64.26%. The results shed light on whether and how these scenarios can shape the energy-carbon emission reduction trajectories and develop the low-carbon pathways in Hebei Province.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: This study aims to describe the spatial and temporal characteristics of human infections with H7N9 virus in China using data from 19 February 2013 to 30 September 2017 extracted from Centre for Health Protection of the Department of Health (CHP) and electronic databases managed by China’s Center for Disease Control (CDC) and provincial CDCs synthetically using the Geographic Information System (GIS) software ArcMap™ 10.2 and SaTScan. Based on the multiple analyses of the A(H7N9) epidemics, there was a strong seasonal pattern in A(H7N9) virus infection, with high activity in the first quarter of the year, especially in January, February, and April, and a gradual dying out in the third quarter. Spatial distribution analysis indicated that Eastern China contained the most severely affected areas, such as Zhejiang Province, and the distribution shifted from coastline areas to more inland areas over time. In addition, the cases exhibited local spatial aggregation, with high-risk areas most found in the southeast coastal regions of China. Shanghai, Jiangsu, Zhejiang, and Guangdong were the high-risk epidemic areas, which should arouse the attention of local governments. A strong cluster from 9 April 2017 to 24 June 2017 was also identified in Northern China, and there were many secondary clusters in Eastern and Southern China, especially in Zhejiang, Fujian, Jiangsu, and Guangdong Provinces. Our results suggested that the spatial-temporal clustering of H7N9 in China is fundamentally different, and is expected to contribute to accumulating knowledge on the changing temporal patterns and spatial dissemination during the fifth epidemic and provide data to enable adequate preparation against the next epidemic.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...