ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (47)
  • MDPI  (47)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (47)
  • Sociology
  • Technology
  • 1
    Publication Date: 2019
    Description: In this study, we investigated sulfate-modified BiVO4 with the high photocatalytic activity synthesized by a sol-gel method in the presence of thiourea, followed by the annealing process at different temperatures. Its structure was characterized by thermal gravimetric analysis (TGA), powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The BiVO4 synthesized in the presence of thiourea and calcined at 600 °C (T-BVO-600) exhibited the highest photocatalytic degradation efficiency of methylene blue (MB) in water; 98.53% MB removal was achieved within 240 min. The reaction mechanisms that affect MB photocatalytic degradation on the T-BVO-600 were investigated via an indirect chemical probe method, using chemical agents to capture the active species produced during the early stages of photocatalysis, including 1,4-benzoquinone (scavenger for O2−), ethylenediaminetetraacetic acid disodium salt (scavenger for h+), and tert-butanol (scavenger for HO•). The results show that holes (h+) and hydroxyl radicals (HO•) are the dominant species of MB decomposition. Photoluminescence (PL) measurement results of terephthalic acid solutions in the presence of BiVO4 samples and BiVO4 powders confirm the involvement of hydroxyl radicals and the separation efficiency of electron-hole pairs in MB photocatalytic degradation. Besides, the T-BVO-600 exhibits good recyclability for MB removal, achieving a removal rate of above 83% after five cycles. The T-BVO-600 has the features of high efficiency and good recyclability for MB photocatalytic degradation. These results provide new insight into the purpose of improving the photocatalytic activity of BiVO4 catalyst.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Rheological curves of cement–fly ash (C–FA) paste incorporating nanomaterials including nano-SiO2 (NS), nano-CaCO3 (NC) and nano-Al2O3 (NA) at different resting times (hydration time of 5 min, 60 min, and 120 min) were tested with a rheometer. The rheological behaviors were described by the Herschel–Bulkley (H–B) model, and the influences of these nanomaterials on rheological properties of C–FA paste were compared. Results show that the types, content of nanomaterials and resting time have great influences on the rheological properties of C–FA paste. Incorporating NS and NA increases yield stress and plastic viscosity, and decreases the rheological index of C–FA paste. When the content of NS and NA were 2 wt%, the rheological index of C–FA paste was less than 1, indicating rheological behavior changes from shear thickening to shear thinning. Meanwhile, with rising resting time, yield stress and plastic viscosity increased significantly, but the rheological index decreased evidently, showing paste takes on shear thinning due to the rise of resting time. However, incorporating 3 wt% NC and the rising of resting time did not change the rheological properties of C–FA paste. These differences are mainly that the specific surface area (SSA) of NS (150 m2/g) and NA (120 m2/g) are much larger than that of NC (40 m2/g). The huge SSA of NS and NA consume lots of free water and these tiny particles accelerate the hydration process during resting time.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: As a kind of renewable resource, biomass has been used more and more widely, but the potassium contained in biomass can cause corrosion of the refractory. For a better understanding of corrosion thermodynamic mechanisms, the five components of common refractory materials (magnesium chrome spinel MgO·Cr2O3, magnesium aluminum spinel MgO·Al2O3, Al2O3, MgO, and Cr2O3) with potassium salts (K2CO3, K2SO4, and KCl) under high-temperature were studied by using the FactSageTM 7.0 software. Thermodynamic calculation results indicate that MgO is the best corrosion resistance of the five components of refractory materials. Based on the obtained results, the corrosion experiments in the laboratory were carried out (muffle furnace or high-temperature tube furnace) for corrosion reaction of KCl and MgO. The chemical compositions of the corroded samples were analyzed by X-ray diffraction (XRD). Under laboratory conditions (600–1200 °C), no corrosion products have been observed in the high-temperature corrosion experiments. The result indicates that to prevent the corrosion processes, refractories should contain as much MgO as possible.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018
    Description: The base-catalyzed melamine-formaldehyde (MF) reactions were studied in both diluted and concentrated solutions. The influences of F/M molar ratio and pH on the polymer structures were investigated based on the quantitative 13C-NMR analysis. The results show that both F/M molar ratio and pH influence the competitive formation of ether and methylene bridges. For the cases of F/M = 2.0, and 3.0, methylene bridge formation is minor in contrast to ether bridges either at pH = 9.3–9.8 or at 7.3–7.8. When the molar ratio was lowered to 1.0, methylene bridges became competitive with ether bridges at pH = 9.3–9.8, but the latter is still more favorable. When the lower molar ratio overlaps with the lower pH, significant changes were found. The content of methlylene bridges was over three times that of ether bridges with M/F = 1.0 and at pH = 7.3–7.8. The results in this study were compared with those previously obtained for base-catalyzed urea-formaldehyde reactions. It was found that molar ratio and pH influence the structures of the MF and UF polymers in similar ways. The different synthesis conditions of UF and MF resin were also addressed by comparing the structures of UF polymers with MF polymers.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018
    Description: A novel strategy for fabricating inverted core-shell structured latex particles was implemented to investigate the morphology and properties of polyvinyl acetate (PVAc)-based latex. In this study, active grafting points were synthesized onto the surface of PVAc latex cores via grafting acrylonitrile (AN) to obtain a controllable coating growth of the shell monomer, styrene (St). The effect of shell growth on the morphological evolvement was explored by tuning the time of shell monomer polymerization. Unique particle morphologies, transferring from “hawthorn” type, over “peeled pomegranate” type, to final “strawberry-like” type, were observed and verified by electron microscopy. The morphological structure of latex particles exerted a significant effect on the particle size, phase structure, and mechanical properties of the obtained emulsions. The water-resistance of PVAc-based latex was also evaluated by the water absorption of latex films. More importantly, the experimental results provided a reasonable support for the controlled growth of St monomer, that is, the self-nucleation of dispersive St monomer can be transformed to in-situ coating growth on the PVAc core surface depending on the AN-active grafting points. This fabricating approach provides a reference for dynamical design and control of the latex particle morphology.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: The high-strength bolt shear connector in prefabricated concrete slab has advantages in applications as it reduces time during the construction of steel-concrete composite building structures and bridges. In this research, an innovative and advanced bolt shear connector in steel-concrete composite structures is proposed. To investigate the fundamental mechanical behavior and the damage form, 22 static push-off tests were conducted with consideration of different bolt dimensions, the reserved hole constraint condition, and the dimension of slab holes. A finite element (FE) model was established and verified by using test results, and then the model was utilized to investigate the influence of concrete strength, bolt dimension, yield strength, bolt pretension, as well as length-to-diameter ratio of high strength bolts on the performances of shear connectors. On the basis of FE simulation and test results, new design formulas for the calculation of shear resistance behavior were proposed, and comparisons were made with current standards, including AISC, EN 1994-1-1, GB 50017-2017, and relevant references, to check the calculation efficiency. It is confirmed that the proposed equation is in better agreement with the experimental results.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: After pre-fatigue cycles at different strain amplitudes with different N/Nf values (33.3%, 50%, and 75%), specimens of HRB335 steel were subjected to uniaxial tension until failure. By this method the mechanical properties of the specimens after pre-fatigue testing were measured, and the fracture morphology and microscopic morphology in the vicinity of the specimen’s neck surface near the fracture were observed. The verification of the characteristics to be used to estimate the damage caused during the loading cycles was conducted. By observing optical microscope images of the surface area near the neck of the specimens, it was found that the images of surface cracks were significantly different and strongly depended on the number of pre-fatigue cycles the specimen had undergone. In response to this phenomenon, both the microscopic images taken directly from the photos of the surface crack distribution and the binary images based on them were statistically analyzed, and then a parameter, S, denoted as the “unit crack area”, characterizing the cumulative fatigue damage was suggested. Furthermore, the test procedure and the calculation formula for determining the image parameters were summarized, and a method for evaluating the remaining life of steel after low-cycles of reversed tension and compression was proposed.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Twinning structures and their interfacial segregation play a key role in strengthening of magnesium alloys. Micro-steps are frequently existed in the incoherent twin boundaries, while the effect of them on interface and interfacial segregation is still not clear. In this work, we performed an atomic-scale microstructure analysis using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) to explore the effect of micro-steps on twin and its interfacial segregation in Mg-Ag alloy. Diffraction pattern of the incoherent {10 1 ¯ 1} twin shows that the misorientation has a slight tilt of 5° from its theoretical angle of 125° due to the accumulated effects of the micro-steps and their misfit dislocations in twin boundaries. Most of the micro-steps in {10 1 ¯ 1} twin boundary are in the height of 2 d ( 10 1 ¯ 1 ) and 4 d ( 10 1 ¯ 1 ) , respectively, and both of them have two types according to whether there are dislocations on the micro-steps. The twin boundary is interrupted by many micro-steps, which leads to a step-line distributed interfacial segregation. Moreover, the Ag tends to segregate to dislocation cores, which results in the interruption of interfacial segregation at the micro-steps with dislocations.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: The influence of using cement on the residual properties of fly ash geopolymer concrete (FAGC) after exposure to high temperature of up to 800 °C was studied in terms of mass loss, residual compressive strength and microstructure. The mass loss was found to increase with the increase of exposure temperature, which is attributed to vaporization of water and dehydroxylation of sodium aluminosilicate hydrate (N-A-S-H) gels. The dehydroxylation of calcium silicate hydrate (C-S-H) gels and the disintegration of portlandite were responsible for higher mass loss ratio of FAGCs containing cement. The results showed that cement could increase compressive strength of FAGCs up to 200 °C, after which a significant reduction in residual strength was observed. It was found that FAGCs without cement yielded higher residual strength than the original strength after heating up to 600 °C. The observed increase of compressive strength up to 200 °C was attributed to the secondary geopolymerization which was evidenced in the scanning electronic microscopy (SEM) images.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: In order improve the poor mechanical properties of the body-centred cubic (BCC) lattice structure, which suffers from the stress concentration effects at the nodes of the BCC unit cell, a graded-strut design method is proposed to increase the radii corner of the BCC nodes, which can obtain a new graded-strut body-centred cubic (GBCC) unit cell. After the relative density equation and the force model of the structure are obtained, the quasi-static uniaxial compression experiments and finite element analysis (FEA) of GBCC samples and BCC samples are performed. The experimental results show that for the fabricated samples with the same relative density, the GBCC can increase the initial stiffness by at least 38.20%, increase the plastic failure strength by at least 34.12%, compared with the BCC. Coupled experimental and numerical results not only suggest that the GBCC has better mechanical and impact resistance properties than the BCC, but also indicate that as the radii corner increases, the stress concentration effect at the node and the mechanical properties will be improved, which validates the proposed design method for graded-strut unit cells and can provide guidance for the design and future research on ultra-light lattice structures in related fields.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...