ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-14
    Description: Recent studies in the marine environment have suggested that the limited phenotypic plasticity of cold-adapted species like Atlantic cod (Gadus morhua L.) will cause distributions to shift toward the poles in response to rising sea temperatures. Some cod stocks are predicted to collapse, but this remains speculative because almost no information is available on the thermal tolerance of cod in its natural environment. We used electronic tags to measure the thermal experience of 384 adult Atlantic cod from eight different stocks found in the NE Atlantic. Over 100,000 days of data were collected in total. The data demonstrate that cod is an adaptable and tolerant species capable of surviving and growing in a wide range of temperate marine climates. Total thermal niche ranged from -1.5°C to 19°C; this range was narrower (1°C to 8°C) during the spawning season. Cod in each of the stocks studied had a thermal niche of approximately 12°C, but latitudinal differences in water temperature meant that cod in the warmer, southern regions experienced three times the degree days (~4000 DD year-1) than individuals from northern regions (~1200 DD year-1). Growth rates increased with temperature, reaching a maximum in those cod with a mean thermal history of between 8°C and 10°C. Our direct observations of habitat occupation suggest that adult cod will be able to tolerate warming seas but that cod populations may still be affected because the effects of marine climate change will impact cod at earlier life-history stages or via indirect effects on prey species.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: The response of the phytoplankton and bacterial spring succession to the predicted warming of sea surface temperature in temperate climate zones during winter was studied using an indoor-mesocosm approach. The mesocosms were filled with winter water from the Kiel Fjord, Baltic Sea. Two of them were started at ~2°C and the temperature was subsequently increased according to the decadal temperature profile of the fjord (ΔT 0°C, baseline treatment). The other mesocosms were run at 3 elevated temperatures with differences of ΔT +2, +4 and +6°C. All mesocosms were exposed to the same light conditions. Timing of peak phytoplankton primary production (PP) during the experimental spring bloom was not significantly influenced by increasing temperatures, whereas the peak of bacterial secondary production (BSP) was accelerated by about 2 d per °C. This suggests that, in case of warming, the spring peak of bacterial degradation of organic matter (in terms of BSP) would occur earlier in the year. Furthermore, the lag time between the peaks of PP and BSP (about 16 d for ΔT 0°C) would diminish progressively at elevated temperatures. The average ratio between BSP and PP increased significantly from 0.37 in the coldest mesocosms to 0.63 in the warmest ones. Community respiration and the contribution of picoplankton (〈3 µm fraction) to this also increased at elevated temperatures. Our results lead to the prediction that climate warming during the winter/ early spring in temperate climate zones will favor bacterial degradation of organic matter by tightening the coupling between phytoplankton and bacteria. However, if PP is reduced by warming, as in our experiments, this will not necessarily lead to increased recycling of organic matter (and CO2).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: In the deep sea, benthic communities largely depend on organic material from the overlying water column for food. The remains of organisms on the seafloor (food falls) create areas of organic enrichment that attract scavengers. The scavenging rates and communities of food falls of medium-sized squid, fish and jellyfish (1-100 cm) are poorly known. To test our hypothesis that scavenging responses are specific for different food falls, we deployed camera landers baited with squid, jellyfish and fish for 9 to 25 h at 1360 to 1440 m in the southern Norwegian Sea. Image analysis of 8 deployments showed rapid food fall consumption (20.3 +/- 1.4 [SD] to 31.6 +/- 3.7 g h(-1)) by an amphipod-dominated scavenging community that was significantly different between the food fall types. Fish and squid carcasses were mostly attended by amphipods of the genus Eurythenes. Smaller unidentified amphipods dominated the jellyfish experiments together with brittle stars (cf. Ophiocten gracilis) and decapod shrimps (cf. Bythocaris spp.); the latter only occurred on jellyfish carcasses. The removal time for jellyfish (similar to 17 h) was almost twice as long as that for squid and fish (9-10 h). The maximum scavenger abundance was significantly higher on fish carcasses than on jellyfish and squid. The times at which abundances peaked were similar for jellyfish and fish (after 8-9 h) but significantly sooner for squid (3.00 +/- 0.35 h). Our results, although based on a small number of experiments, demonstrate differences in scavenging responses between food fall species, suggesting tight coupling between the diversity and ecology of benthic scavenging communities in the Norwegian Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 88 . pp. 181-184.
    Publication Date: 2018-03-21
    Description: Respiration and activity of eelpouts Zoarces viviparus L. were measured in an underwater respiration chamber in Kiel Bay (Germany) under short-term hypoxia. Respiration and swimming activity both declined almost continuously with decreasing oxygen saturation...
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-01
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-23
    Description: Global climate change involves an increase in oceanic CO2 concentrations as well as thermal stratification of the water column, thereby reducing nutrient supply from deep to surface waters. Changes in inorganic carbon (C) or nitrogen (N) availability have been shown to affect marine primary production, yet little is known about their interactive effects. To test for these effects, we conducted continuous culture experiments under N limitation and exposed the bloomforming dinoflagellate species Scrippsiella trochoidea and Alexandrium fundyense (formerly A. tamarense) to CO2 partial pressures (pCO(2)) ranging between 250 and 1000 mu atm. Ratios of particulate organic carbon (POC) to organic nitrogen (PON) were elevated under N limitation, but also showed a decreasing trend with increasing pCO(2). PON production rates were highest and affinities for dissolved inorganic N were lowest under elevated pCO(2), and our data thus demonstrate a CO2-dependent trade-off in N assimilation. In A. fundyense, quotas of paralytic shellfish poisoning toxins were lowered under N limitation, but the offset to those obtained under N-replete conditions became smaller with increasing pCO(2). Consequently, cellular toxicity under N limitation was highest under elevated pCO(2). All in all, our observations imply reduced N stress under elevated pCO(2), which we attribute to a reallocation of energy from C to N assimilation as a consequence of lowered costs in C acquisition. Such interactive effects of ocean acidification and nutrient limitation may favor species with adjustable carbon concentrating mechanisms and have consequences for their competitive success in a future ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 408 . pp. 47-53.
    Publication Date: 2019-09-23
    Description: Previous studies on trait-mediated trophic interactions in marine ecosystems were restricted to pair-wise interactions between one species of meso-herbivore and plant, though multi-grazer interactions are more common in nature. We investigated whether the feeding of one consumer, either the periwinkle Littorina littorea or the isopod Idotea baltica, affected consumption by the other consumer via anti-herbivory defence induction in the brown seaweed Fucus vesiculosus. To test the generality of our findings, we ran similar experiments with seaweed/grazer populations in the North and Baltic Seas (NE Atlantic). Grazer-specificity in induction strength was assessed by using the same species of grazer for induction and consumption. ‘Indirect’ induction effects were assessed by using different species of grazers for induction and consumption. Palatability assays were run with live algae and with reconstituted food to distinguish between different mechanisms of resistance. Grazing by herbivores induced a chemical defence in F. vesiculosus. In the North Sea population, the induced defences were only effective against I. baltica, regardless of inducer identity. The sensitive responses of I. baltica to the induced defences were also detected in the reconstituted food assays using Baltic Sea organisms. Thus, marine meso-grazers may be affected by previous feeding through the same or a different species of consumer by modified prey traits, such as induced chemical defences. Furthermore, the magnitude of the effect in the induced defences can be determined by species-specific sensitivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-01
    Description: Generalist and opportunistic marine predators use flexible foraging behaviour to exploit prey bases that change in diversity and spatial and temporal distributions, Behavioural flexibility is constrained by characteristics Such as individual cognitive and physical capabilities, age, reproductive condition and central place foraging. To assess flexibility in the foraging tactics of a marine bird, we investigated the diets and foraging behaviour of the largest seabird predator in the North Atlantic Ocean. Northern gannets Sula bassana exploit abroad spectrum of pelagic prey that range in mass by more than 2 orders of magnitude, We investigated their foraging activity at their largest. offshore colony in the western Atlantic Ocean during 1998 to 2002, when they preyed primarily on shoals of spawning and post-spawning capelin Mallotus villosus, a small forage fish (similar to 15 g), and also on a much larger pelagic fish, post-smolt Atlantic salmon Salmo salar (similar to 200 g). Inter-annual dietary variation is associated with gannet and prey fish distributions. Landings of capelin at the colony by gannets were correlated with returns of larger foraging flocks from inshore, whereas landings of Atlantic salmon were associated with smaller flocks returning from offshore. Maximum foraging trip distances ranged from 20 to 200 km and averaged 57 +/- 12 (SE) km, consistent with distances to inshore capelin aggregations. When capelin abundance was low (in 2002), more gannets foraged offshore, preyed on large pelagic fishes (mostly Atlantic salmon) and exhibited the greatest dietary diversity. Though the Outbound portions of foraging trips were more sinuous than inbound routes, individual gannets exhibited general fidelity to foraging sites. These large avian predators used flexible foraging tactics to adjust to changing prey conditions and generate longer-term strategies to Lake advantage of diverse trophic interactions over a range of ocean ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-05-08
    Description: Spatial and temporal variability in environmental factors can exert major influences on survival and growth of living organisms. However, in many key areas of fisheries science (e.g. growth, survival and recruitment determination), environmental heterogeneity is usually ignored because of insufficient environmental or fisheries data or lack of evidence that such heterogeneity impacts response variables. For the eastern Baltic Sea (ICES Subdivisions 25 to 32), we evaluated spatial and temporal differences in conditions affecting the survival of cod Gadus morhua L. eggs at survival on four distinct spawning sites within the assessment area. We intercalibrated ways of quantifying the volume of water ('reproductive volume') at each site where salinity, oxygen and temperature conditions permitted successful egg development. We have developed and compared a time series (1952 to 1996) of reproductive volumes among the areas to identify spatial differences. The results of 2 independent volume-estimation methods are comparable, indicating that highly significant differences exist among the sites, and that the westernmost spawning ground, Bornholm Basin, has on average the highest reproductive volume and the lowest variability among the 4 sites. These findings may be useful in evaluating how spatial and temporal variability in environmental conditions affect egg hatching success and possibly recruitment in the Baltic stock.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 258 . pp. 233-241.
    Publication Date: 2018-05-30
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...