ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Moore, M. J., Rowles, T. K., Fauquier, D. A., Baker, J. D., Biedron, I., Durban, J. W., Hamilton, P. K., Henry, A. G., Knowlton, A. R., McLellan, W. A., Miller, C. A., Pace, R. M.,3rd, Pettis, H. M., Raverty, S., Rolland, R. M., Schick, R. S., Sharp, S. M., Smith, C. R., Thomas, L., der Hoop, J. M. V., & Ziccardi, M. H. REVIEW: Assessing North Atlantic right whale health: threats, and development of tools critical for conservation of the species. Diseases of Aquatic Organisms, 143, (2021): 205-226, https://doi.org/10.3354/dao03578.
    Description: Whaling decimated North Atlantic right whales (Eubalaena glacialis - NARW) since the 11th century and southern right whales (E. australis - SRW) since the 19th century. Today, NARWs are critically endangered and decreasing, whereas SRWs are recovering. We review NARW health assessment literature, NARW Consortium databases, and efforts and limitations to monitor individual and species health, survival, and fecundity. Photographs are used to track individual movement and external signs of health such as evidence of vessel and entanglement trauma. Post mortem examinations establish cause of death and determine organ pathology. Photogrammetry is used to assess growth rates and body condition. Samples of blow, skin, blubber, baleen and feces quantify hormones that provide information on stress, reproduction, and nutrition, identify microbiome changes, and assess evidence of infection. We also discuss models of the population consequences of multiple stressors, including the connection between human activities (e.g., entanglement) and health. Lethal and sublethal vessel and entanglement trauma have been identified as major threats to the species. There is a clear and immediate need for expanding trauma reduction measures. Beyond these major concerns, further study is needed to evaluate the impact of other stressors, such as pathogens, microbiome changes, and algal and industrial toxins, on NARW reproductive success and health. Current and new health assessment tools should be developed and used to monitor the effectiveness of management measures, and will help determine whether they are sufficient for a substantive species recovery.
    Description: We thank the participants of the North Atlantic Right Whale Health Assessment workshop, June 24-26, 2019, Silver Spring MD, USA, for their contributions. NA14OAR4320158 funded the drafting of this manuscript. We sincerely thank three anonymous reviewers for their constructive comments. The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the authors and do not necessarily reflect the views of NOAA.
    Keywords: Right Whale ; Health ; Trauma ; Reproduction ; Stressor ; Cumulative Effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-09-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Huntley, N., Brandt, M., Becker, C., Miller, C., Meiling, S., Correa, A., Holstein, D., Muller, E., Mydlarz, L., Smith, T., & Apprill, A. Experimental transmission of Stony Coral Tissue Loss Disease results in differential microbial responses within coral mucus and tissue. ISME Communications, 2(1), (2022): 46, https://doi.org/10.1038/s43705-022-00126-3.
    Description: Stony coral tissue loss disease (SCTLD) is a widespread and deadly disease that affects nearly half of Caribbean coral species. To understand the microbial community response to this disease, we performed a disease transmission experiment on US Virgin Island (USVI) corals, exposing six species of coral with varying susceptibility to SCTLD. The microbial community of the surface mucus and tissue layers were examined separately using a small subunit ribosomal RNA gene-based sequencing approach, and data were analyzed to identify microbial community shifts following disease acquisition, potential causative pathogens, as well as compare microbiota composition to field-based corals from the USVI and Florida outbreaks. While all species displayed similar microbiome composition with disease acquisition, microbiome similarity patterns differed by both species and mucus or tissue microhabitat. Further, disease exposed but not lesioned corals harbored a mucus microbial community similar to those showing disease signs, suggesting that mucus may serve as an early warning detection for the onset of SCTLD. Like other SCTLD studies in Florida, Rhodobacteraceae, Arcobacteraceae, Desulfovibrionaceae, Peptostreptococcaceae, Fusibacter, Marinifilaceae, and Vibrionaceae dominated diseased corals. This study demonstrates the differential response of the mucus and tissue microorganisms to SCTLD and suggests that mucus microorganisms may be diagnostic for early disease exposure.
    Description: This work was funded by an International Coral Reef Society student grant to N.H., National Science Foundation (NSF) VI EPSCoR 0814417 and 1946412 and NSF (Biological Oceanography) award numbers 1928753 to MEB and TBS, 1928609 to AMSC, 1928817 to EMM, 19228771 to LDM, 1927277 to DMH as well as 1928761 and 1938112 to AA, NSF EEID award number 2109622 to MEB, AA, LDM, and AMSC, and a NOAA OAR Cooperative Institutes award to AA (#NA19OAR4320074). Samples were collected under permit #DFW19057U authorized by the Department of Planning and Natural Resources Coastal Zone Management.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Christiansen, F., Dawson, S. M., Durban, J. W., Fearnbach, H., Miller, C. A., Bejder, L., Uhart, M., Sironi, M., Corkeron, P., Rayment, W., Leunissen, E., Haria, E., Ward, R., Warick, H. A., Kerr, I., Lynn, M. S., Pettis, H. M., & Moore, M. J. Population comparison of right whale body condition reveals poor state of the North Atlantic right whale. Marine Ecology Progress Series, 640, (2020): 1-16, doi:10.3354/meps13299.
    Description: The North Atlantic right whale Eubalaena glacialis (NARW), currently numbering 〈410 individuals, is on a trajectory to extinction. Although direct mortality from ship strikes and fishing gear entanglements remain the major threats to the population, reproductive failure, resulting from poor body condition and sublethal chronic entanglement stress, is believed to play a crucial role in the population decline. Using photogrammetry from unmanned aerial vehicles, we conducted the largest population assessment of right whale body condition to date, to determine if the condition of NARWs was poorer than 3 seemingly healthy (i.e. growing) populations of southern right whales E. australis (SRWs) in Argentina, Australia and New Zealand. We found that NARW juveniles, adults and lactating females all had lower body condition scores compared to the SRW populations. While some of the difference could be the result of genetic isolation and adaptations to local environmental conditions, the magnitude suggests that NARWs are in poor condition, which could be suppressing their growth, survival, age of sexual maturation and calving rates. NARW calves were found to be in good condition. Their body length, however, was strongly determined by the body condition of their mothers, suggesting that the poor condition of lactating NARW females may cause a reduction in calf growth rates. This could potentially lead to a reduction in calf survival or an increase in female calving intervals. Hence, the poor body condition of individuals within the NARW population is of major concern for its future viability.
    Description: North Atlantic: NOAA NA14OAR4320158; Australia: US Office of Naval Research Marine Mammals Program (Award No. N00014-17-1-3018), the World Wildlife Fund for Nature Australia and a Murdoch University School of Veterinary and Life Sciences Small Grant Award; New Zealand: New Zealand Antarctic Research institute (NZARI 2016-1-4), Otago University and NZ Whale and Dolphin Trust; Argentina: National Geographic Society (Grant number: NGS-379R-18).
    Keywords: Baleen whale ; Bioenergetics ; Eubalaena ; Morphometrics ; Photogrammetry ; Unmanned aerial vehicles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-07
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stewart, J., Durban, J., Europe, H., Fearnbach, H., Hamilton, P., Knowlton, A., Lynn, M., Miller, C., Perryman, W., Tao, B., & Moore, M. Larger females have more calves: influence of maternal body length on fecundity in North Atlantic right whales. Marine Ecology Progress Series, 689, (2022): 179–189, https://doi.org/10.3354/meps14040.
    Description: North Atlantic right whales (NARW) are critically endangered and have been declining in abundance since 2011. In the past decade, human-caused mortalities from vessel strikes and entanglements have been increasing, while birth rates in the population are at a 40 yr low. In addition to declining abundance, recent studies have shown that NARW length-at-age is decreasing due to the energetic impacts of sub-lethal entanglements, and that the body condition of the population is poorer than closely related southern right whales. We examined whether shorter body lengths are associated with reduced fecundity in female NARW. We compared age-corrected, modeled metrics of body length with 3 metrics of fecundity: age at first reproduction, average inter-birth interval, and the number of calves produced per potential reproductive year. We found that body length is significantly related to birth interval and calves produced per reproductive year, but not age at first reproduction. Larger whales had shorter inter-birth intervals and produced more calves per potential reproductive year. Larger whales also had higher lifetime calf production, but this was a result of larger whales having longer potential reproductive spans, as body lengths have generally been declining over the past 40 yr. Declining body sizes are a potential contributor to low birth rates over the past decade. Efforts to reduce entanglements and vessel strikes could help maintain population viability by increasing fecundity and improving resiliency of the population to other anthropogenic and climate impacts.
    Description: Funding to the New England Aquarium for curation of the photo-identification catalog is provided by NOAA Contract 1305M2- 18-P-NFFM-0108.
    Keywords: Photogrammetry ; Cetacean ; Reproduction ; Anthropogenic impacts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-28
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lonati, G., Zitterbart, D. P., Miller, C. A., Corkeron, P. J., Murphy, C. T., & Moore, M. J. Investigating the thermal physiology of critically endangered North Atlantic right whales Eubalaena glacialis via aerial infrared thermography. Endangered Species Research, 48, (2022): 139–154, https://doi.org/10.3354/esr01193.
    Description: The Critically Endangered status of North Atlantic right whales Eubalaena glacialis (NARWs) warrants the development of new, less invasive technology to monitor the health of individuals. Combined with advancements in remotely piloted aircraft systems (RPAS, commonly ‘drones’), infrared thermography (IRT) is being increasingly used to detect and count marine mammals and study their physiology. We conducted RPAS-based IRT over NARWs in Cape Cod Bay, MA, USA, in 2017 and 2018. Observations demonstrated 3 particularly useful applications of RPAS-based IRT to study large whales: (1) exploring patterns of cranial heat loss and providing insight into the physiological mechanisms that produce these patterns; (2) tracking subsurface individuals in real-time (depending on the thermal stratification of the water column) using cold surface water anomalies resulting from fluke upstrokes; and (3) detecting natural changes in superficial blood circulation or diagnosing pathology based on heat anomalies on post-cranial body surfaces. These qualitative applications present a new, important opportunity to study, monitor, and conserve large whales, particularly rare and at-risk species such as NARWs. Despite the challenges of using this technology in aquatic environments, the applications of RPAS-based IRT for monitoring the health and behavior of endangered marine mammals, including the collection of quantitative data on thermal physiology, will continue to diversify.
    Description: All activities were conducted under NOAA permit 18355-01 and were approved by Woods Hole Oceanographic Institution’s Institutional Animal Care and Use Committee (IACUC). The RPAS pilot-in-command was certified through the United States Federal Aviation Admin-istration. We thank Amy Knowlton (Anderson Cabot Center for Ocean Life at the New England Aquarium) for photo-identifying individual North Atlantic right whales and Rocky Geyer (Woods Hole Oceanographic Institution) for providing and interpreting water temperature data relatedto the observations of thermal flukeprints (courtesy of the Massachusetts Water Resources Authority). We also appreciate constructive conversations with Iain Kerr (Ocean Alliance), Chris Zadra (Ocean Alliance), and Joy Reidenberg (Icahn School of Medicine at Mount Sinai). Funding was provided by a Woods Hole Oceanographic Research Opportunity grant, the North Pond Foundation, and NMFS NA14OAR4320158.
    Keywords: Cetaceans ; Drone ; Health ; Marine mammals ; Remote sensing ; Temperature ; UAVs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Leslie, M. S., Perkins-Taylor, C. M., Durban, J. W., Moore, M. J., Miller, C. A., Chanarat, P., Bahamonde, P., Chiang, G., & Apprill, A. Body size data collected non-invasively from drone images indicate a morphologically distinct Chilean blue whale (Blaenoptera musculus) taxon. Endangered Species Research, 43, (2020): 291-304, https://doi.org/10.3354/esr01066.
    Description: The blue whale Balaenoptera musculus (Linnaeus, 1758) was the target of intense commercial whaling in the 20th century, and current populations remain drastically below pre-whaling abundances. Reducing uncertainty in subspecific taxonomy would enable targeted conservation strategies for the recovery of unique intraspecific diversity. Currently, there are 2 named blue whale subspecies in the temperate to polar Southern Hemisphere: the Antarctic blue whale B. m. intermedia and the pygmy blue whale B. m. brevicauda. These subspecies have distinct morphologies, genetics, and acoustics. In 2019, the Society for Marine Mammalogy’s Committee on Taxonomy agreed that evidence supports a third (and presently unnamed) subspecies of Southern Hemisphere blue whale subspecies, the Chilean blue whale. Whaling data indicate that the Chilean blue whale is intermediate in body length between pygmy and Antarctic blue whales. We collected body size data from blue whales in the Gulfo Corcovado, Chile, during the austral summers of 2015 and 2017 using aerial photogrammetry from a remotely controlled drone to test the hypothesis that the Chilean blue whale is morphologically distinct from other Southern Hemisphere blue whale subspecies. We found the Chilean whale to be morphologically intermediate in both overall body length and relative tail length, thereby joining other diverse data in supporting the Chilean blue whale as a unique subspecific taxon. Additional photogrammetry studies of Antarctic, pygmy, and Chilean blue whales will help examine unique morphological variation within this species of conservation concern. To our knowledge, this is the first non-invasive small drone study to test a hypothesis for systematic biology.
    Description: We are thankful to Foundation MERI (Melimoyu Ecosystem Research Institute) for logistical and funding support. Cruise support in 2017 was provided by the Dalio Foundation (now ‘OceanX’).
    Keywords: Aerial photogrammetry ; Taxonomy ; Subspecies ; Whaling ; Systematics ; Unoccupied aerial systems ; UAS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...