ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-12
    Description: Lightwave-driven quasiparticle collisions on a subcycle timescale Nature 533, 7602 (2016). doi:10.1038/nature17958 Authors: F. Langer, M. Hohenleutner, C. P. Schmid, C. Poellmann, P. Nagler, T. Korn, C. Schüller, M. S. Sherwin, U. Huttner, J. T. Steiner, S. W. Koch, M. Kira & R. Huber Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances—called quasiparticles—such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron–hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-20
    Description: Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-13
    Description: The paper reports a study of the effect of carbon fibres on the mechanical fracture parameters of alkali-activated slag mortars. The carbon fibres were added in the amount of 1, 2 and 3%, respectively with respect to the mass of the slag. The mechanical fracture parameters were determined using evaluation of fracture tests carried out on 40 × 40 × 160 mm beam specimens with an initial central edge notch. The monitored parameters were compressive strength, modulus of elasticity, effective fracture toughness and specific fracture energy. The specimen response during fracture tests was also monitored by means of acoustic emission. It was shown that as the addition of carbon fibres increased the value of compressive strength and modulus of elasticity of alkali-activated slag dropped to 50% in case of the highest amount of fibres. The effective fracture toughness is not significantly influenced by addition of carbon fibres. On the other hand, the fracture energy value gradually incre...
    Print ISSN: 1757-8981
    Electronic ISSN: 1757-899X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-13
    Description: The generation of acoustic emission signals is directly associated with formation of cracks in materials during loading. This paper deals with possibilities of acoustic emission method application as the tool for the identification of structural damage in alkali-activated composite materials during compressive strength test. In experimental part, the three piezoelectric sensors were occupied for the continuous record of emission signals of stressed material feedback on applied mechanical load in real time. Detection of specific acoustic emission signals in the course of deformation of the test samples indicates that irreversible structural changes occur in the composite. Four different mixtures of alkali-activated slag mortars were prepared, the first one was reference without the addition of carbon fibres. The others contain the carbon fibres in amount 0.5, 1.0 and 2.0 % from the weight of the slag.
    Print ISSN: 1757-8981
    Electronic ISSN: 1757-899X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-17
    Description: The aim of the paper is non-destructive measurement of differently degraded specimens by high temperature intended for further testing of joints of stainless steel helical reinforcement glued into the groove and differently degraded concrete. Measurement intended for determination of possibilities of estimation of future properties of named joints is performed by the Impact-Echo method and by the ultrasonic pulse velocity method on specimens of dimensions 400 × 100 × 100 mm made of concrete of the C20/25 strength class degraded by different elevated temperature. Five sets of specimens were manufactured - four sets of specimens were heated in the furnace at temperatures of 400 °C, 600 °C, 800 °C and 1000 °C and one set was kept intact as reference. Specimens will be afterwards additionally strengthened at the tensile side of specimens and broken by four-point flexural strength test. The non-destructive measurement aims to evaluate the residual physical-mechanical properties of pl...
    Print ISSN: 1757-8981
    Electronic ISSN: 1757-899X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...