ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • energy metabolism  (2)
  • Springer  (2)
  • Institute of Physics
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 184 (1998), S. 13-20 
    ISSN: 1573-4919
    Keywords: control analysis ; top-down elasticity analysis ; enzyme kinetics ; energy metabolism ; mitochondria ; oxidative phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract This paper reviews top-down elasticity analysis, which is a subset of metabolic control analysis. Top-down elasticity analysis provides a systematic yet simple experimental method to identify all the primary sites of action of an effector in complex systems and to distinguish them from all the secondary, indirect, sites of action. In the top-down approach, the complex system (for example, a mitochondrion, cell, organ or organism) is first conceptually divided into a small number of blocks of reactions interconnected by one or more metabolic intermediates. By changing the concentration of one intermediate when all others are held constant and measuring the fluxes through each block of reactions, the overall kinetic response of each block to each intermediate can be established. The concentrations of intermediates can be changed by adding new branches to the system or by manipulating the activities of blocks of reactions whose kinetics are not under investigation. To determine how much an effector alters the overall kinetics of a block of reactions, the overall kinetic response of the block to the intermediate is remeasured in the presence of the effector. Blocks that contain significant primary sites of action will display altered kinetics; blocks that change rate only because of secondary alterations in the concentrations of other metabolites will not. If desired, this elasticity analysis can be repeated with the primary target blocks subdivided into simpler blocks so that the primary sites of action can be defined with more and more precision until, with sufficient subdivision, they are mapped onto individual kinetic steps. Top-down elasticity analysis has been used to identify the targets of effectors of oxygen consumption in mitochondria, hepatocytes and thymocytes. Effectors include poisons such as cadmium and hormones such as tri-iodothyronine. However, the method is more general than this; in principle it can be applied to any metabolic or other steady-state system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4935
    Keywords: methylprednisolone ; thymocytes ; ConA ; energy metabolism ; oxygen consumption ; Ca2+ metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The short-term effects of high concentrations of Methylprednisolone (MP) on the energy metabolism of quiescent and Concanavalin A-stimulated rat thymocytes were investigated in vitro. Concanavalin A (ConA) stimulated the respiration rate of quiescent thymocytes by 35%. Addition of more than 0.15 mg MP/107 cells to ConA-stimulated cells reversed this respiratory stimulation; in addition, higher concentrations of MP caused a similar progressive decrease in the rate of respiration of both quiescent and ConA-stimulated cells. Similarly, the stimulation of respiration by ConA was greatly reduced in MP-treated cells. MP addition lowered cytoplasmic [Ca2+] and, at high concentrations, abolished the ability of ConA to increase [Ca2+]. Thus MP both reverses and prevents the immediate stimulation of thymocytes by ConA. In quiescent thymocytes, MP strongly inhibited that part of the oxygen consumption used to drive the cycle of Na+ influx across the plasma membrane and Na+ efflux on the Na+K+-ATPase, but did not inhibit oxygen consumption used to drive protein synthesis. In ConA-stimulated thymocytes MP had the same effects and also strongly inhibited oxygen consumption dependent on the cycle of Ca2+ influx across the plasma membrane and Ca2+ efflux on the Ca2+-ATPase, but had little effect on oxygen consumption used to drive RNA and DNA synthesis. These results show that MP prevents cation cycling in thymocytes (either by preventing cation influx or by inhibiting cation pumps) and prevents mitogenic stimulation of the cells. The high MP concentration required and the speed of onset of the effect (lless than 30s) provide strong evidence that these effects of MP are not mediated by glucocorticoid receptors and subsequent activation of gene expression. They may be caused by direct effects of MP on the properties of the plasma membrane. These effects are considered to be, at least partially, responsible for the beneficial results that currently have been obtained using MP megadoses in various clinical situations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...