ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Photosynthesis  (2)
  • Springer  (2)
  • Institute of Physics
  • 1
    ISSN: 1432-2048
    Keywords: Cations and photosynthesis ; Chloroplast (low-salt effects) ; Light activation (photosynthesis enzymes) ; Photosynthesis ; Spinacia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The role of monovalent cations in the photosynthesis of isolated intact spinach chloroplasts was investigated. When intact chloroplasts were assayed in a medium containing only low concentrations of mono- and divalent cations (about 3 mval l-1), CO2-fixation was strongly inhibited although the intactness of chloroplasts remained unchanged. Addition of K+, Rb+, or Na+ (50–100 mM) fully restored photosynthesis. Both the degree of inhibition and restoration varied with the plant material and the storage time of the chloroplasts in “low-salt” medium. In most experiments the various monovalent cations showed a different effectiveness in restoring photosynthesis of low-salt chloroplasts (K+〉Rb+〉Na+). Of the divalent cations tested, Mg2+ also restored photosynthesis, but to a lesser extent than the monovalent cations. In contrast to CO2-fixation, reduction of 3-phosphoglycerate was not ihibited under low-salt conditions. In the dark, CO2-fixation of lysed chloroplasts supplied with ATP, NADPH, and 3-phosphoglycerate strictly required the presence of Mg2+ but was independent of monovalent cations. This finding excludes a direct inactivation of Calvin cycle enzymes as a possible basis for the inhibition of photosynthesis under low-salt conditions. Light-induced alkalization of the stroma and an increase in the concentration of freely exchangeable Mg2+ in the stroma, which can be observed in normal chloroplasts, did not occur under low-salt conditions but were strongly enhanced after addition of monovalent cations (50–100 mM) or Mg2+ (20–50 mM). The relevance of a light-triggered K+/H+ exchange at the chloroplast envelope is discussed with regard to the light-induced increase in the pH and the Mg2+ concentration in the stroma, which are thought to be obligatory for light activation of Calvincycle enzymes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Leaf slices ; Photosynthesis ; Protoplast volume ; Water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rates of photosynthesis of leaf slices from various hygro-, meso- and xerophytes were measured in the absence of stomatal control in various stages of osmotic dehydration. The external osmotic potential π° for a 50% inhibition of photosynthesis varied between 20 bar in some hygrophytes up to 50 bar in xerophytes. The response of photosynthetic enzymes to increased salt concentrations in the reaction medium was similar in leaf extracts from hygro-, meso- and xerophytes. The total protoplast volume in vacuum-infiltrated leaf discs from various plants was measured as the difference between 3H2O-labeled space and [14C]sorbitol-labeled space. In all plants, the protoplast volume could be reduced to about 55% of the maximum volume of tissue in equilibrium with water, without decreasing photosynthesis. Reduction of the maximal protoplast volume below 55% decreased photosynthesis in all tissues to the same decreased photosynthesis in all tissues to the same degree. At 20% maximal volume, photosynthesis of all plants was completely inhibited. The differential decrease of protoplast volumes of various leaf tissues in response to changes in π° was mainly due to the different osmotic potential of the cell sap (πcs). The relative contribution of sugars to the overall osmolarity of the cell sap was up to nineteen times higher in xerophytes than in hygrophytes. Short-term recovery of photosynthesis after hypertonic stress was good in xerophytes, incomplete in mesophytes and absent in hygrophytes. There was also a large discrepancy between the partial recovery of protoplast volumes and the complete absence of a recovery of photosynthesis in hygrophytes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...