ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-11
    Description: Animal waste from concentrated animal feeding operations (CAFOs) is a significant contributor to nitrate contamination of groundwater. To evaluate the cost-effectiveness of alternative policies for controlling nitrate pollution at both the field and farm level, this article utilizes a structural dynamic model of a representative CAFO. The model accounts for herd management, manure handling systems, crop rotations, water sources, irrigation systems, waste disposal options, and pollutant emissions. Results show that the standard approach of limiting the amount of animal waste that may be applied to fields reduces net farm income by more than 25%, whereas the most cost-effective emission-based policies reduce income only marginally. This motivates greater consideration for nonpoint source pollution control policies that target estimated emissions. Furthermore, price instruments are shown to slightly outperform quantity instruments under conditions that are typical for CAFOs. The results also show that adopting alternative technologies and practices is crucial for cost-effective abatement, and demonstrate the importance of accounting for the spatial heterogeneity of both irrigation water and salinity when designing policy mechanisms for nitrate pollution control.
    Keywords: Q53 - Air Pollution ; Water Pollution ; Noise ; Hazardous Waste ; Solid Waste ; Recycling, Q58 - Government Policy
    Print ISSN: 2040-5790
    Electronic ISSN: 2040-5804
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-18
    Description: It is important to know the electrokinetic properties of crustal rocks for interpreting the conductivity mechanisms and seismoelectric phenomena during earthquakes and seismoelectric well logging. In this study, electrokinetic experiments are conducted using a special core-holder by employing an AC lock-in technique. A series of experiments are conducted on 10 sandstone samples to measure the streaming potentials and streaming currents, and the experiments on each sample are done at six different salinities. The streaming potential coefficient and streaming current coefficient are calculated from the measured streaming potentials and streaming currents. The experimental results show that streaming potential coefficient and streaming current coefficient decrease as the salinity increases. The dependence of these two coefficients on permeability and pore radius are analysed and compared with previous works. At low salinities, the streaming potential coefficient and streaming current coefficient increase with the increasing permeability and pore radius. At high salinities, the streaming potential coefficient (streaming current coefficient) almost share a same value for 10 different samples. This conclusion indicates that the differences of rock parameters can only be well recognized at lower salinities, and the electrokinetic signals are invalid at high salinities, which offers a restrictive condition for using the amplitude of electrokinetic signals to estimate rock parameters. The zeta-potential have also been estimated through combined measurements of streaming potential and streaming current. The surface conductivity and its contribution to electrokinetic effects are determined from a comparison of zeta-potentials by two different methods, and then the validation of the Helmholz–Smoluchowski equation for a capillary tube is tested in rocks. We also compare our date with theoretical and experimental works, and set up an expression about the relationship between zeta potential and salinity, which fits the experimental data well.
    Keywords: Mineral Physics, Rheology, Heat Flow and Volcanology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...