ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    OceanObs'09
    In:  In: Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society Conference. , ed. by Hall, J., Harrison, D. E. and Stammer, D. ESA Publication, WPP-306 . OceanObs'09, Venice, Italy, pp. 1-4.
    Publication Date: 2012-07-06
    Description: The autonomous measurement of dissolved carbon dioxide (CO2) is of great and still increasing importance for addressing many scientific as well as socio-economic questions. Although there is a need for reliable, fast and easy-to-use instrumentation to measure the partial pressure of dissolved CO2 (pCO2) in situ, only few autonomous underwater sensors are available. Here we present the measuring principle as well as the latest development state of a commercial sensor (HydroC™/CO2, CONTROS Systems & Solutions GmbH, Kiel, Germany), which is optimized in a collaboration between the IFM-GEOMAR and the manufacturer. In situ tests and laboratory experiments are essential parts of the comprehensive optimization process, which aims at the successful autonomous long-term deployment on e.g. surface buoys, underwater observatories and floats.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    OceanObs'09
    In:  In: Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society. , ed. by Hall, J., Harrison, D. E. and Stammer, D. ESA Publication, WPP-306 . OceanObs'09, Venice, Italy, p. 8.
    Publication Date: 2012-07-06
    Description: Autonomous chemical sensors are required to document the marine carbon dioxide system's evolving response to anthropogenic CO2 inputs, as well as impacts on short- and long-term carbon cycling. Observations will be required over a wide range of spatial and temporal scales, and measurements will likely need to be maintained for decades. Measurable CO2 system variables currently include total dissolved inorganic carbon (DIC), total alkalinity (AT), CO2 fugacity (fCO2), and pH, with comprehensive characterization requiring measurement of at least two variables. These four parameters are amenable to in situ analysis, but sustained deployment remains a challenge. Available methods encompass a broad range of analytical techniques, including potentiometry, spectrophotometry, conductimetry, and mass spectrometry. Instrument capabilities (precision, accuracy, endurance, reliability, etc.) are diverse and will evolve substantially over the time that the marine CO2 system undergoes dramatic changes. Different suites of measurements/parameters will be appropriate for different sampling platforms and measurement objectives.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-07-06
    Description: Dissolved greenhouse gas measurements (GHG) are of increasing importance for science, monitoring agencies and industry. Sensors for dissolved carbon dioxide (CO2) and methane (CH4) are applied in a growing number of applications. At the same time the number of mobile platforms deployed in the field is growing. Modern mobile platforms can sample on spatial and temporal scales that previously were not easily accessible thereby providing cost efficient data. Furthermore a trend towards the interconnection of mixed platforms and sensors is recognizable. The connection between these trends is discussed on the basis of sensor integrations into platforms. An approach between sensor and platform manufacturers becomes necessary to achieve an intelligent combination of contemporary measuring devices and their carriers as well as to make the adaptations on both sides efficient. Instruments of the HydroC™ family were successfully deployed on versatile stationary and mobile platforms, such as AUVs and floats. Platform and application demands for the deployment of dissolved gas sensors on diverse platforms are discussed. Fields of improvement for the instruments are identified to make them more versatile and access further platforms in the future.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...