ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • IEEE  (3)
  • 1
    Publication Date: 2020-11-18
    Description: The anomaly of SLHF, which is a key component of the Earth's energy balance and represents the heat flux from the Earth's surface to the atmosphere associated with evaporation or transpiration of water on the surface and subsequent condensation of water vapor in the troposphere, has been widely reported as a possible earthquake precursor. The causes are generally attributed to the increase in infrared thermal (IR) temperature and the air ionization produced by increased emanation of radon from the Earth's crust. In this paper, the theoretical analysis and case study show that there is close relationship between soil moisture and SLHF anomalies. For inland earthquakes, the increase of soil moisture due to the rising of groundwater level will bring with higher potential evaporation, leading to the increase of latent heat flux. Further study with more accurate soil moisture product after the new satellite mission will help us to better understand the influence of soil moisture on SLHF variation and their relations with seismogenic process.
    Description: Published
    Description: Munich, Germany
    Description: 1.10. TTC - Telerilevamento
    Description: 3.1. Fisica dei terremoti
    Description: restricted
    Keywords: earthquake anomaly recognition (EAR) ; SLHF ; soil moisture lithosphere-coversphere-atmosphere (LCA) coupling ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-18
    Description: The GEOSS under construction is providing space-,aero-,ground/sea-based multiple observations on planet Earth for the seismogenic process monitoring and earthquake precaution. The stress enhancement and energy accumulation in seismic activity area change locally the physical parameters of lithosphere with the developing of a series of effects that can comprise most of the following ones: initial cracks, the fracturing of rockmass, the changing of electromagnetic properties, the decreasing of dielectric constant, the re-activation of P-holes, the leaking of poregas, and the rise of water-level. The physical states of coversphere and atmosphere are to be affected due to the lithosphere-coversphere-atmosphere (LCA) coupling, and the signals from the underground, surface, and atmosphere to satellites are to be changed with parameter anomaly. We suggested that the LCA coupling is important for understanding GEOSS observations, especially for earthquake anomaly recognition (EAR). Using deviation-time-space-thermal (DTS-T) method for EAR, three recent major earthquakes (2009 Italy L'Aquila earthquake, 2010 China Yushu earthquake and 2010-2011 New Zealand earthquake sequence) are taken as typical cases for analysis to the multi-parameters anomalies, preceding the shocking, with quasi-synchronism and geoconsistency. The specific LCA coupling effects related with the earthquakes are also discussed in brief.
    Description: Published
    Description: Munich, Germany
    Description: 1.10. TTC - Telerilevamento
    Description: 3.1. Fisica dei terremoti
    Description: restricted
    Keywords: earthquake anomaly recognition (EAR) ; GEOSS ; lithosphere-coversphere-atmosphere (LCA) coupling ; multiple parameters ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: NEMO-SN1, located in the central Mediterranean Sea, Western Ionian Sea, off Eastern Sicily Island (Southern Italy) at 2100 m water depth, 25 km from the harbour of the city of Catania, is a prototype of a cabled deep-sea multiparameter observatory and the first operating with real-time data transmission in Europe since 2005. NEMO-SN1 is also the first-established node of EMSO (European Multidisciplinary Seafloor Observatory, http://emso-eu.org), one of the incoming European large-scale research infrastructure included since 2006 in the Roadmap of the ESFRI (European Strategy Forum on Research Infrastructures, http://cordis.europa.eu/esfri/roadmap.htm), which will specifically address long-term monitoring of environmental processes related to Marine Ecosystems, Climate Change and Geo-hazards. NEMO-SN1 has been deployed and developed over the last decade thanks to Italian resources and to the EC project ESONET-NoE (European Seas Observatory NETwork - Network of Excellence, 2007-2011) that funded the LIDO-DM (Listening to the Deep Ocean - Demonstration Mission) and a technological interoperability test (http://www.esonet-emso.org/esonet-noe/). NEMO-SN1 is performing geophysical and environmental long-term monitoring by acquiring seismological, geomagnetic, gravimetric, accelerometric, physico-oceanographic, hydro-acoustic, bioacoustic measurements specifically related to earthquakes and tsunamis generation and ambient noise characterisation in term of marine mammal sounds, environmental and anthropogenic sources. A further main feature of NEMO-SN1 is to be an important test-site for the construction of KM3NeT (Kilometre-Cube Underwater Neutrino Telescope, http://www.km3net.org/), another large-scale research infrastructure included in the ESFRI Roadmap constituted by a large volume neutrino telescope. The description of the observatory and the most recent data acquired will be presented and framed in the general objectives of EMSO.
    Description: Published
    Description: Tokio, 5-8 April 2011
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: 4.6. Oceanografia operativa per la valutazione dei rischi in aree marine
    Description: restricted
    Keywords: NEMO-SN1 cabled observatory ; Geo-hazards ; Bio-acoustics ; High-energy astrophysics ; EMSO ; KM3NeT ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...