ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-11-11
    Description: Many numerical methods have been developed for in-plane vibration of orthotropic rectangular plates with various boundary conditions; however, the exact results for such structures with elastic boundary conditions are very scarce. Therefore, the object of this paper is to present an accurate solution for free in-plane vibration of orthotropic rectangular plates with various boundary conditions by the method of reverberation ray matrix (MRRM) and improved golden section search (IGSS) algorithm. The boundary condition studied in this paper is defined as that a set of opposite edges is with one kind of simply supported boundary conditions, while the other set is with any kind of classical and general elastic boundary conditions or their combination. Its accuracy, reliability, and efficiency are verified by some numerical examples where the results are compared with other exact solutions in the published literature and the FEA results based on the ABAQUS software. Finally, some new accurate results for free in-plane vibration of orthotropic rectangular plates with elastic boundary conditions are examined and further can be treated as the reference data for other approximate methods or accurate solutions.
    Print ISSN: 1024-123X
    Electronic ISSN: 1563-5147
    Topics: Mathematics , Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-07
    Description: The present work is concerned with dynamic characteristics of beam-stiffened rectangular plate by an improved Fourier series method (IFSM), including mobility characteristics, structural intensity, and transient response. The artificial coupling spring technology is introduced to establish the clamped or elastic connections at the interface between the plate and beams. According to IFSM, the displacement field of the plate and the stiffening beams are expressed as a combination of the Fourier cosine series and its auxiliary functions. Then, the Rayleigh–Ritz method is applied to solve the unknown Fourier coefficients, which determines the dynamic characteristics of the coupled structure. The Newmark method is adopted to obtain the transient response of the coupled structure, where the Rayleigh damping is taken into consideration. The rapid convergence of the current method is shown, and good agreement between the predicted results and FEM results is also revealed. On this basis, the effects of the factors related to the stiffening beam (including the length, orientations, and arrangement spacing of beams) and elastic parameters, as well as damping coefficients on the dynamic characteristics of the stiffened plate are investigated.
    Print ISSN: 1070-9622
    Electronic ISSN: 1875-9203
    Topics: Mathematics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...