ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-09-18
    Description: To fulfill the design objective of a structure and thermal protection system, accurate load environment prediction is very important, so we present a high-fidelity aerothermoelastic load calculation method based on a partitioned computational fluid dynamics/computational structural dynamics/computational thermal dynamics (CFD/CSD/CTD) coupling analysis. For the data transformation between the CFD/CSD/CTD systems, finite element interpolation (FEI) is explored, and a shape-preserving grid deformation strategy is achieved via radical basis functions (RBFs). Numerical results are presented for validation of the proposed CFD/CSD/CTD coupling analysis. First, a simply supported panel in hypersonic flow is investigated for results comparison of the proposed coupling method and previous work. Second, a hypersonic forebody is investigated to explore the aerothermoelastic effects while considering the feedback between deformation and aerodynamic heating. The results show that the CFD/CSD/CTD coupling method is accurate for analysis of aerothermoelasticity. In addition, considering the aerothermoelastic effect, the shear force and bending movement increase with time before 900s and decrease after 900s, and at 900s increased percentages of 5.7% and 4.1% are observed, respectively. Therefore, it is necessary to adopt high-fidelity CFD/CSD/CTD coupling in the design of a structure and thermal protection system for hypersonic vehicles.
    Print ISSN: 1024-123X
    Electronic ISSN: 1563-5147
    Topics: Mathematics , Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-01-01
    Description: The protective performances of coating formed by organo-silane with a linear alkyl chain for promoting aluminum alloy corrosion protection were evaluated by electrochemical techniques. The coatings were self-assembled in the hydrolyzed hydroalcoholic bath ofn-octyltriethoxysilane (OS) and cured at hot air oven by different time. The coatings prepared by the less self-assembled number and shorter cured time, were always porous and scarcely protective. On the contrary, those built by the more self-assembled number and the longer cured time had higher coverage on aluminum surface and favorable corrosion resistant property. The best results were obtained whenn-octyltri-ethoxysilane (OS) was hydrolyzed 25 h, self-assembling of OS was conducted for five times and the multi-layers were cured at 120 for 1∼2 hours. In this case, the thicker, high cross-linked and more scarcely defective layer was formed on aluminum alloy surface.
    Electronic ISSN: 0973-4945
    Topics: Chemistry and Pharmacology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...