ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-03-04
    Description: Abundant lamprophyre dykes occur near the northern margin of the North China Craton and offer a unique opportunity to study the nature of the mantle source. The dykes are minettes composed of phlogopite, sanidine and calcite. 40 Ar/ 39 Ar dating yields ages of 234 ± 2 and 222 ± 6 Ma. The lamprophyres are near-primary, mantle-derived ultrapotassic melts, having low SiO 2 (31.0 – 41.5 wt%) and high K 2 O (4.40 – 7.12 wt%) contents, high Mg# (62 – 84) and high contents of compatible elements. They are characterized by fractionated rare earth element patterns, radiogenic Sr and unradiogenic Nd isotope compositions ( 87 Sr/ 86 Sr i = 0.7070 – 0.7075; Nd ( t ) = –12.8 to –9.2). A small amount of mafic crustal rocks (〈4.4%) may have been assimilated during magma ascent, as revealed by 187 Os/ 188 Os i ratios of 0.4548 – 0.8068. These data suggest that the lamprophyres originated from a low degree of partial melting of an enriched subcontinental lithospheric mantle source with abundant phlogopite, clinopyroxene and carbonate. The source has been metasomatized by carbonate- and potassium-rich fluids derived from carbonated sediments recycled via subduction of Palaeo-Mongolian oceanic slab beneath the North China Craton. Supplementary material: Microprobe analyses of biotite, feldspar and carbonate, 40 Ar– 39 Ar analytical data, and 36 Ar/ 40 Ar v. 39 Ar/ 40 Ar inverse isochron diagrams for phlogopite phenocrysts and groundmass from the Datong lamprophyres are available at https://doi.org/10.6084/m9.figshare.c.3574265 .
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...