ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2013-03-15
    Beschreibung: April 2012 marked the 130th anniversary of the death of Charles Darwin. One of many significant contributions he made to science was the subsidence theory of atoll formation, which he penned on 12 April 1836 during the voyage of the Beagle through the Pacific. Darwin’s elegant theory, founded on the premise of a subsiding volcano and the corresponding upward growth of coral reef, was astonishing for the time considering the absence of an underpinning awareness of plate tectonics. His theory has endured until modern times in spite of a number of opposing ideas and permutations and has an enviable longevity amongst paradigms in geomorphology. Darwin frequently alluded to the generally circular morphology of the atoll shape, yet the reality is that many atolls are neither circular nor elliptical, instead possessing irregular morphologies. In particular, many exhibit major arcuate ‘bight-like’ structures (ABLS) in their plan form. These departures from the circular form are indicative of geomorphological processes that cannot be ignored. ABLS are the morphological expression of large submarine failures that are common on the slopes of volcanic edifices. Such failures can occur during any stage of atoll formation and are a valuable addition to Darwin’s theory because they indicate the instability of the volcanic foundations. Moreover, ABLS have fundamental implications for hazard research in the context of oceanic islands. Not only does our extension to the theory explain the diversity of atoll shape, but it also provides a mechanism for identifying a vast number of potential local tsunamigenic sources, which is critical for advancing modern understanding of tsunami hazards in oceanic environments.
    Print ISSN: 0959-6836
    Digitale ISSN: 1477-0911
    Thema: Geographie , Geologie und Paläontologie
    Publiziert von Sage
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2018
    Beschreibung: 〈p〉Recurrent storms, floods, landslides, earthquakes and tsunamis challenge the development of resilient infrastructure and communities in coastal northwestern British Columbia. Vulnerability assessment first requires extended and improved understanding of geohazards in the Pacific Basin to constrain modelling of future events. An investigation of soils and bedrock structures in the Douglas Channel provides insight into the distribution of deposits attributed to geohazards in the region. Newly discovered marine inundation deposits corroborate numerical models and suggest that Pacific-sourced storms and earthquake-triggered tsunamis expend much of their energy in the outer coast and rarely reach far up the mainland fjords. Small-volume Folisolic slides and rockfalls do not generate tsunamis of any consequence. In contrast, marine sediments deposited beyond storm berms at the fjord head are a record of local tsunamis generated by large-volume marine slumps. Deep-fractured bedrock mapped upslope from relict submarine features would trigger damaging tsunami waves if rapid failure into the fjord were to occur. The observations above suggest only great earthquakes, large landslides and seasonal storms above a certain threshold volume and impulse energy produce geomorphically significant inundation events. However, even small submarine landslides have tsunamigenic potential in Douglas Channel since they occur in shallow water.〈/p〉
    Print ISSN: 0375-6440
    Digitale ISSN: 2041-4927
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...