ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-06-23
    Description: Large negative carbon ( 13 C) and boron ( 11 B) isotope excursions (both 〉6) within the widely distributed Neoproterozoic carbonates associated with the Marinoan "snowball Earth" event are interpreted to represent considerable perturbations of the carbon cycle and the accompanying reduction in global ocean pH. Yet this interpretation is predicated on these isotopic signals being primary in origin. Recent studies of Pleistocene carbonate platform sediments from the Great Bahama Bank (western Atlantic Ocean; Clino core, drilled by the Bahamas Drilling Project) and elsewhere demonstrate that 13 C excursions of similar magnitude and global distribution to the snowball Earth excursions are formed following eustatic sea-level fall and exposure of shelf carbonates to meteoric diagenesis. Here we present 11 B and trace element data (B/Ca, Na/Ca, Mg/Ca, and Sr/Ca) from the same Clino core carbonate sediments in order to explore the influence of this diagenetic process on the boron system. We find that within the interval of meteoric diagenesis the 11 B of bulk carbonate is reduced by ~6 in conjunction with a drop in the B/Ca ratio of 90%. Our results clearly demonstrate that the boron system is impacted by meteoric diagenesis, implying that a rigorous assessment of the diagenetic history of all ancient carbonates is required to ensure any paleoceanographic interpretation based on 11 B and/or B/Ca are robust.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-07-31
    Description: The enigma of the Bahamas is that this highly productive carbonate system has existed for at least 100 m.y., building a vast edifice of carbonates, thousands of meters thick, in an essentially nutrient-poor environment. Based on measurements of the insoluble material, the Fe and Mn in the carbonate fraction, and the 15 N of the sedimentary organic matter, we suggest a paradigm shift in order to explain the formation of the Bahamas and possibly other similar platforms. We propose that the Great Bahama Bank is currently, and may in the past have been, fertilized by atmospheric dust, promoting the fixation of atmospheric N 2 by cyanobacteria. These cyanobacteria provided a source of nitrogen to the rest of the community in this nutrient-poor environment. The fixation of N has imparted a characteristic 15 N signal and has been responsible, through the drawdown of CO 2 , for initiating the precipitation of carbonate in the shallow waters. This phenomenon might be responsible for the formation of vast amounts of sediments in the oceans, not only within recent times, but throughout geological history, particularly in the early history of the Earth prior to the existence of calcium carbonate–secreting organisms.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...