ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: 〈span〉The geological history of the Burmese subduction margin, where India obliquely subducts below Indochina, remains poorly documented although it is key to deciphering geodynamic models for the evolution of the broader Tibetan-Himalayan orogen. Various scenarios for the evolution of the orogen have been proposed, including a collision of India with Myanmar in the Paleogene, a significant extrusion of Myanmar and Indochina from the India-Asia collision zone, or very little change in paleogeography and subduction regime since the India-Asia collision. This article examines the history of the Burmese forearc basin, with a particular focus on Eocene–Oligocene times to reconstruct the evolution of the Burmese margin during the early stages of the India-Asia collision. We report on sedimentological, geochemical, petrographical, and geochronological data from the Chindwin Basin—the northern part of the Burmese forearc—and integrate these results with previous data from other basins in central Myanmar.Our results show that the Burmese margin acted as a regular Andean-type subduction margin until the late middle Eocene, with a forearc basin that was open to the trench and fed by the denudation of the Andean volcanic arc to the east. We show that the modern tectonic configuration of central Myanmar formed 39–37 million years ago, when the Burmese margin shifted from an Andean-type margin to a hyper-oblique margin. The forearc basin was quickly partitioned into individual pull-apart basins, bounded to the west by a quickly emerged accretionary prism, and to the east by synchronously exhumed basement rocks, including coeval high-grade metamorphics. We interpret this shift as resulting from the onset of strike-slip deformation on the subduction margin leading to the formation of a paleo-sliver plate, with a paleo fault system in the accretionary prism, pull-apart basins in the forearc, and another paleo fault system in the backarc. This evolution implies that hyper-oblique convergence below the Burmese margin is at least twice older than previously thought. Our results reject any India-Asia convergence scenario involving an early Paleogene collision of India with Myanmar. In contrast, our results validate conservative geodynamic models arguing for a close-to-modern pre-collisional paleogeometry for the Indochina Peninsula, and indicate that any post-collisional rotation of Indochina, if it occurred at all, must have been achieved by the late middle Eocene.〈/span〉
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-28
    Description: The exhumation history of the central Himalaya is well documented, but lateral variations in exhumation remain poorly constrained. In this study, we identify sediment source areas and examine the late Neogene exhumation history of the eastern Himalaya from the synorogenic sedimentary record of its foreland basin. We present Nd and Hf isotopic data as well as apatite and zircon fission-track analyses from the Miocene–Pliocene Siwalik Group along the recently dated Kameng River section in Arunachal Pradesh, northeastern India. Our isotopic data show that Siwalik Group sediments deposited between 13–7 and 〈2.6 Ma in Arunachal Pradesh were mainly derived from Higher Himalayan source rocks. In contrast, sediments deposited between ca. 7 and 3 Ma have far less negative Nd and Hf values that require involvement of the Gangdese Batholith and Yarlung suture zone source areas via the Brahmaputra River system. Consequently, these sediments should also record incision of the Namche Barwa massif by this river. Source-area exhumation rates of Himalayan-derived sediments, determined from detrital zircon fission-track data, were on the order of 1.8 km/m.y. in the fastest-exhuming areas. These rates are very similar to those calculated for the central Himalaya and have been relatively constant since ca. 13 Ma. Our results do not support the hypothesis of a major change in exhumation rate linked to either local or regional climate change or to Shillong Plateau uplift during the Miocene, as reported elsewhere. The zircon fission-track data further suggest that exhumation of the Namche Barwa massif between 7 and 3 Ma was much slower than the ~10 km/m.y. rate recorded in the recent past. Detrital apatite fission-track data indicate deformation of the Siwaliks due to forward propagation of the frontal thrust since around 1 Ma.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: 〈span〉〈div〉Abstract〈/div〉The geological history of the Burmese subduction margin, where India obliquely subducts below Indochina, remains poorly documented although it is key to deciphering geodynamic models for the evolution of the broader Tibetan-Himalayan orogen. Various scenarios for the evolution of the orogen have been proposed, including a collision of India with Myanmar in the Paleogene, a significant extrusion of Myanmar and Indochina from the India-Asia collision zone, or very little change in paleogeography and subduction regime since the India-Asia collision. This article examines the history of the Burmese forearc basin, with a particular focus on Eocene–Oligocene times to reconstruct the evolution of the Burmese margin during the early stages of the India-Asia collision. We report on sedimentological, geochemical, petrographical, and geochronological data from the Chindwin Basin—the northern part of the Burmese forearc—and integrate these results with previous data from other basins in central Myanmar.Our results show that the Burmese margin acted as a regular Andean-type subduction margin until the late middle Eocene, with a forearc basin that was open to the trench and fed by the denudation of the Andean volcanic arc to the east. We show that the modern tectonic configuration of central Myanmar formed 39–37 million years ago, when the Burmese margin shifted from an Andean-type margin to a hyper-oblique margin. The forearc basin was quickly partitioned into individual pull-apart basins, bounded to the west by a quickly emerged accretionary prism, and to the east by synchronously exhumed basement rocks, including coeval high-grade metamorphics. We interpret this shift as resulting from the onset of strike-slip deformation on the subduction margin leading to the formation of a paleo-sliver plate, with a paleo fault system in the accretionary prism, pull-apart basins in the forearc, and another paleo fault system in the backarc. This evolution implies that hyper-oblique convergence below the Burmese margin is at least twice older than previously thought. Our results reject any India-Asia convergence scenario involving an early Paleogene collision of India with Myanmar. In contrast, our results validate conservative geodynamic models arguing for a close-to-modern pre-collisional paleogeometry for the Indochina Peninsula, and indicate that any post-collisional rotation of Indochina, if it occurred at all, must have been achieved by the late middle Eocene.〈/span〉
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...