ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-05-13
    Description: The early Eocene (ca. 56–47.8 Ma) was an interval of exceptional warmth with reduced pole-to-equator temperature gradients. Climate proxies indicate mean annual air temperatures (MATs) and sea-surface temperatures (SSTs) exceeding 8–18 °C and frost-free, mild winters in polar areas, features that have proven difficult to reproduce with the most elaborate climate models. A full appraisal of the early Eocene polar climate has been, however, limited by possible seasonal biases associated with geochemical proxies and the lack of data from the vast Eurasian Arctic. Here we present multiproxy data from lower-middle Eocene coastal plain sediments of the New Siberian Islands (Russia) showing that taxodioid Cupressaceae, palms, and the mangrove Avicennia grew in Arctic Siberia above 72°N under air temperatures averaging 16–21 °C annually and 5.5–14 °C in winter. Kaolinite contents are exceptionally high (up to 60% of clay assemblages) and comparable to those found in present-day subtropical soils formed under high mean annual precipitation (MAP 〉1000 mm) and warm (MAT 〉15 °C) conditions. The Avicennia pollen records the northernmost mangrove growth ever documented and indicates early Eocene SSTs exceeding 13 °C in winter and 18 °C in summer. Considering the high MAP estimated for Arctic Siberia and other pan-Arctic landmasses, we propose that the heat from warm river waters draining into the Arctic might have amplified early Eocene polar warmth. Our results provide the first climate constraints for the early Eocene of Arctic Siberia and support the view that most climate models underestimate polar warming in greenhouse conditions.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-26
    Description: Stratigraphic records from northwestern Pangea provide unique insight into global processes that occurred during the latest Permian extinction (LPE). We examined a detailed geochemical record of the Festningen section, Spitsbergen. A stepwise extinction is noted as: starting with (1) loss of carbonate shelly macrofauna, followed by (2) loss of siliceous sponges in conjunction with an abrupt change in ichnofabrics as well as dramatic change in the terrestrial environment, and (3) final loss of all trace fossils. We interpret loss of carbonate producers as related to shoaling of the lysocline in higher latitudes, in relationship to building atmospheric CO 2 . The loss of siliceous sponges is coincident with the global LPE event and is related to onset of high loading rates of toxic metals (Hg, As, Co) that we suggest are derived from Siberian Trap eruptions. The final extinction stage is coincident with redox-sensitive trace metal and other proxy data that suggest onset of anoxia after the other extinction events. These results show a remarkable record of progressive environmental deterioration in northwestern Pangea during the extinction crises.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...