ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-09-08
    Description: Amorphous metal-oxide semiconductors have emerged as potential replacements for organic and silicon materials in thin-film electronics. The high carrier mobility in the amorphous state, and excellent large-area uniformity, have extended their applications to active-matrix electronics, including displays, sensor arrays and X-ray detectors. Moreover, their solution processability and optical transparency have opened new horizons for low-cost printable and transparent electronics on plastic substrates. But metal-oxide formation by the sol-gel route requires an annealing step at relatively high temperature, which has prevented the incorporation of these materials with the polymer substrates used in high-performance flexible electronics. Here we report a general method for forming high-performance and operationally stable metal-oxide semiconductors at room temperature, by deep-ultraviolet photochemical activation of sol-gel films. Deep-ultraviolet irradiation induces efficient condensation and densification of oxide semiconducting films by photochemical activation at low temperature. This photochemical activation is applicable to numerous metal-oxide semiconductors, and the performance (in terms of transistor mobility and operational stability) of thin-film transistors fabricated by this route compares favourably with that of thin-film transistors based on thermally annealed materials. The field-effect mobilities of the photo-activated metal-oxide semiconductors are as high as 14 and 7 cm(2) V(-1) s(-1) (with an Al(2)O(3) gate insulator) on glass and polymer substrates, respectively; and seven-stage ring oscillators fabricated on polymer substrates operate with an oscillation frequency of more than 340 kHz, corresponding to a propagation delay of less than 210 nanoseconds per stage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Yong-Hoon -- Heo, Jae-Sang -- Kim, Tae-Hyeong -- Park, Sungjun -- Yoon, Myung-Han -- Kim, Jiwan -- Oh, Min Suk -- Yi, Gi-Ra -- Noh, Yong-Young -- Park, Sung Kyu -- England -- Nature. 2012 Sep 6;489(7414):128-32. doi: 10.1038/nature11434.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Flexible Display Research Center, Korea Electronics Technology Institute, Seongnam 463-816, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955624" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-06-01
    Description: A 250-km-long broadband and long-period (0.01–20,000 s periods) magnetotelluric (MT) line along latitude 401/2°N spans from the California-Nevada border at longitude 120°W across the buried extension of the northern Sierra Nevada, the southern Cascades arc, and the subducting Gorda plate to longitude 123°W. The resulting resistivity cross section reveals conductors at the locations of dewatering of the subducting metasomatized crust at 100 km depth, partial melting of the mantle wedge at 40–60 km depth, and melting in the crust shallower than 40 km. The conductor at 100 km is too conductive (8 S/m) to result solely from magma; very conductive fluids must be present either separately or incorporated into hydrous melts. A melt fraction of 7% is estimated for the mantle wedge (average conductivity is 0.06 S/m). Sites of Pleistocene and Holocene volcanism at Lassen Peak, Hat Creek, and Poison Lake are closely associated with crustal conductors inferred to be shallow magma. The MT study also reveals presumably basaltic magma at 40–50 km depth in the upper mantle where the eastern end of the profile extends into the Basin and Range province.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...