ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of America (GSA)  (1)
  • Mineralogical Society of Great Britain and Ireland  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 2016-12-21
    Description: Different forms of abundant silica (e.g., quartz and chalcedony) are closely associated with many types of ore deposits in igneous, metamorphic, and sedimentary environments. Occurrence of quartz and metal-bearing minerals together strongly indicates that silica is an important component in hydrothermal fluids transporting and concentrating economic metals to the ore grade, however chemical and physical characteristics of such ore-forming media remain debated. Understanding of the environment in which chalcedony forms is largely hampered by the lack of chalcedony-hosted fluid inclusions. Our study reports for the first time fortuitously preserved, large-sized (up to 150 μm) fluid inclusions in chalcedony from the Gonchak deposit of optical calcite in the Early Triassic basalts belonging to the Siberian large igneous province. The application of microthermometric methods, scanning electron microscopy with cathodoluminescence, and laser Raman spectroscopy to the fluid inclusions and their host chalcedony recognized the formation of chalcedony from a colloidal suspension. The fluid inclusions represent a gel-like saline aqueous fluid that is residual after precipitation of spherulitic chalcedony aggregates with numerous H 2 O-bearing and H 2 O-poor layers. We propose that the colloidal nature of fluids forming chalcedony lends strong support to the natural existence of experimentally predicted "silicothermal fluids". Such fluids can be instrumental in mobilizing and transporting large quantities of both silica and nano- and micro-particles of ore minerals, followed by efficient separation of the latter from coagulating silica gel into ore-rich zones and bodies.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-06-01
    Description: Kurilite, with the simplified formula, Ag8Te3Se, is a new mineral from the Prasolovskoe epithermal Au-Ag deposit, Kunashir Island, Kuril arc, Russian Federation. It occurs as aggregates up to 2 mm in size, composed of brittle xenomorphic grains, up to several μm in size, in quartz, associated with tetrahedrite, hessite, sylvanite and petzite. Kurilite is opaque, grey, with a metallic lustre and a black streak. Under plane-polarized light, kurilite is white with no observed bireflectance, cleavage, or parting observed. Under crossed polars it appears isotropic without internal reflections. Reflectance values in air and in oil, are tabulated. It has a mean VHN (25 g load) of 99.9 kg/mm2 which equates roughly to a Mohs hardness of 3. Electron microprobe analyses yield a mean composition of Ag 63.71, Au 0.29, Te 29.48, Se 5.04, S 0.07, total 98.71 wt.%. The empirical formula (based on 12 atoms) is (Ag7.97Au0.02)Σ7.99Te3.00(Se0.86Te0.12S0.03)Σ1.01. The calculated density is 7.799 g/cm3 (based on the empirical formula and unit-cell parameters refined from single-crystal data). Kurilite is rhombohedral, R3 or , a 15.80(1), c 19.57(6) Å, V 4231(12)Å3, c:a 1.2386, Z = 15. Its crystal structure remains unsolved. The seven strongest lines of the X-ray powder-diffraction pattern [d in Å (I)(hkl)] are: 3.727(20)(131), 2.996(50)(232), 2.510(30)(226,422), 2.201(100)(128,416,342), 2.152(20)(603), 2.079(30)(253), 2.046(20)(336,434). The mineral is named after the locality.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...