ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of America  (1)
  • Springer Nature  (1)
Collection
Years
  • 1
    Publication Date: 2020-05-10
    Description: Despite their importance to understanding magma chamber processes and the formation of economically viable precious metal deposits, the cooling histories of layered mafic intrusions remain enigmatic due to limited geochronologic constraints. We provide a comprehensive 40Ar/39Ar study of biotite throughout the Rustenburg Layered Suite (RLS) of the Bushveld Complex, South Africa. Analyses of individual biotite grains from 10 samples, encompassing ∼5.5 km of RLS stratigraphy, yielded weighted mean plateau ages that all overlap at 2σ (α-95% confidence level) and range from 2056.3 ± 3.2 Ma to 2052.0 ± 7.6 Ma (2σ). A weighted mean of all biotite plateau ages yielded an age of 2054.47 ± 0.84 Ma (2σ, n = 30, mean square of weighted deviates = 0.23, P = 1.00; ±21 Ma fully propagated). The overlap between our 40Ar/39Ar biotite and published U-Pb zircon ages suggests that the RLS cooled rapidly to the closure temperature of biotite, with cooling rates on the order of 1000 °C m.y.–1 throughout the stratigraphy. Thermal modeling requires enhanced heat loss, due to the hydrothermal system associated with the emplacement of the RLS, to produce the inferred rapid cooling rates. Previously reported young 40Ar/39Ar biotite ages from the UG-2 and MG-1 chromitite seams and the Merensky Reef are likely a product of localized late-stage circulation of hydrothermal fluids. The lack of similarly young 40Ar/39Ar biotite ages from the remainder of the stratigraphy suggests that late-stage hydrothermal events were potentially localized to chromitites and the Merensky Reef.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-01
    Description: Mantle temperatures during the Archaean eon were higher than today. As a consequence, the primary crust formed at the time is thought to have been extensive, thick and magnesium rich, and underlain by a highly residual mantle. However, the preserved volume of this crust today is low, implying that much of it was recycled back into the mantle. Furthermore, Archaean crust exposed today is composed mostly of tonalite-trondhjemite-granodiorite, indicative of a hydrated, low-magnesium basalt source, suggesting that they were not directly generated from a magnesium-rich primary crust. Here we present thermodynamic calculations that indicate that the stable mineral assemblages expected to form at the base of a 45-km-thick, fully hydrated and anhydrous magnesium-rich crust are denser than the underlying, complementary residual mantle. We use two-dimensional geodynamic models to show that the base of magmatically over-thickened magnesium-rich crust, whether fully hydrated or anhydrous, would have been gravitationally unstable at mantle temperatures greater than 1,500-1,550C. The dense crust would drip down into the mantle, generating a return flow of asthenospheric mantle that melts to create more primary crust. Continued melting of over-thickened and dripping magnesium-rich crust, combined with fractionation of primary magmas, may have produced the hydrated magnesium-poor basalts necessary to source tonalite-trondhjemite-granodiorite melts. The residues of these processes, with an ultramafic composition, must now reside in the mantle. © 2014 Macmillan Publishers Limited.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...