ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-05-11
    Description: Eight consecutive swath bathymetry data sets were obtained to monitor the submarine eruption that occurred from 10 October 2011 to 5 March 2012 south of El Hierro Island in the Canary Islands. An increase in seismic activity since July 2011 preceded the onset of the eruption, which was marked by seismic tremor and stained waters. The first bathymetry, 15 d after the eruption started, depicts a cone topping at 205 m depth, growing on a preexisting valley. Recurrent mapping shows changes in the morphology and depth of the cone, allowing us to identify collapses and calculate eruptive volumes and rates, which peaked at 12.7 × 106 m3 d−1 of non–dense rock equivalent (NDRE) on 29–30 October. The final cone consists of at least four vents along a north-northwest–south-southeast lineation, with the shallowest summit at 89 m depth. The total accumulated volume was 329 × 106 NDRE m3, of which one-third formed the cone. Similar cones have been identified on the submerged flanks of the island, with volumes ranging from 〈50 × 106 to 〉1000 × 106 NDRE m3. As in many other volcanic islands, large-scale landslides play an important role in the evolution of El Hierro. A giant flank landslide (El Golfo, 13–134 ka, 150–180 km3) mobilized, in a single event, a volume equivalent to 450–550 eruptions of the size of the reported one, showing striking differences in the construction and destruction rates of the island. This study is relevant for future monitoring programs and geohazard assessment of new submarine eruptions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: There is growing evidence that passive margin sediments in offshore settings host large volumes of fresh and brackish water of meteoric origin in submarine sub-surface reservoirs. Marine geophysical methods, in particular seismic reflection data, can help characterize offshore hydrogeological systems and yet the existing global database of industrial basin wide surveys remains untapped in this context. In this paper we highlight the importance of these data in groundwater exploration, by reviewing existing studies that apply physical stratigraphy and morpho-structural interpretation techniques to provide important information on—reservoir (aquifer) properties and architecture, permeability barriers, paleo-continental environments, sea-level changes and shift of coastal facies through time and conduits for water flow. We then evaluate the scientific and applied relevance of such methodology within a holistic workflow for offshore groundwater research.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Electromagnetic (EM) geophysical methods are well equipped to distinguish electrical resistivity contrasts between freshwater-saturated and seawater-saturated formations. Beneath the semi-arid, rapidly urbanizing island of Malta, offshore groundwater is an important potential resource but it is not known whether the regional mean sea-level aquifer (MSLA) extends offshore. To address this uncertainty, land-based alongshore and across-shore time-domain electromagnetic (TDEM) responses were acquired with the G-TEM instrument (Geonics Ltd., Mississauga, ON, Canada) and used to map the onshore structure of the aquifer. 1-D inversion results suggest that the onshore freshwater aquifer resides at 4–24 m depth, underlain by seawater-saturated formations. The freshwater aquifer thickens with distance from the coastline. We present 2D and 3D electromagnetic forward modeling based on finite-element (FE) analysis to further constrain the subsurface geometry of the onshore freshwater body. We interpret the high resistivity zones that as brackish water-saturated bodies are associated with the mean sea-level aquifer. Generally, time-domain electromagnetic (TDEM) results provide valuable onshore hydrogeological information, which can be augmented with marine and coastal transition-zone measurements to assess potential hydraulic continuity of terrestrial aquifers extending offshore.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Groundwater seepage leads to the formation of theater-headed valleys (THVs) in unconsolidated sediments. In bedrock, the role of groundwater in THV development remains disputed. Here, we integrate field and remote-sensing observations from Gnejna Valley (Maltese Islands) with numerical modeling to demonstrate that groundwater seepage can be the main driver of THV formation in jointed limestone overlying clays. The inferred erosion mechanisms entail (1) widening of joints and fractures by fluid pressure and dissolution and (2) creeping of an underlying clay layer, which lead to slope failure at the valley head and its upslope retreat. The latter is slower than the removal of the talus by creep and sliding on the valley bed. The location and width of THVs are controlled by the location of the master fault and the extent of the damage zone, respectively. The variability of seepage across the fault zone determines the shape of the valley head, with an exponential decrease in seepage away from the fault giving rise to a theater-shaped head that best matches that of Gnejna Valley. Our model may explain the formation of THVs by groundwater in jointed, strong-over-weak chemical sedimentary lithologies, particularly in arid terrestrial settings.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Tectonically controlled topography influences deep-water sedimentary systems. Using 3-D seismic reflection data from the Levant Basin, eastern Mediterranean Sea, we investigate the spatial and temporal evolution of bedforms on a deep-water fan cut by an active normal fault. In the footwall, the fan comprises cyclic steps and antidunes along its axial and external portions, respectively, which we interpret to result from the spatial variation in flow velocity due to the loss of confinement at the canyon mouth. Conversely, in the hanging wall, the seafloor is nearly featureless at seismic scale. Numerical modeling of turbidity currents shows that the fault triggers a hydraulic jump that suppresses the flow velocity downstream, which thus explains the lack of visible bedforms basinward. This study shows that the topography generated by active normal faulting controls the downslope evolution of turbidity currents and the associated bedforms and that seafloor geomorphology can be used to evince syn-tectonic deposition.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...