ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Volcanic sequences on ocean islands record the temporal evolution of underlying magmatic systems and provide insights into how silicic crust is produced away from convergent margins. Assimilation has often been suspected to contribute, but the detection of such a process and its evolving maturity during migration across a mantle plume is less well documented. Here we present new major and trace element and Sr-Nd-Pb-U-Th-Ra-Pa isotope data that facilitate comparison of basanite to phonolite evolution on Tenerife (Canary Islands) with that shown by published data from La Palma. On both islands, (230Th/238U) ratios decrease with differentiation from parental magmas with 230Th excess toward different, silicic contaminants in secular equilibrium. On La Palma, this is inferred to reflect assimilation of small amounts of mafic wall rock. On Tenerife, both (230Th/238U) and (231Pa/235U) ratios decrease toward 1 with increasing differentiation, and this is accompanied by a subtle increase in Pb isotope ratios. At the same time, (226Ra/230Th) ratios change from 〈1 to 〉1 (a hitherto unreported magnitude). The Tenerife assimilant is thus constrained to be a partial melt of syenite formed in equilibrium with residual feldspar. The differences reflect a primarily deeper, more mafic magma system beneath La Palma during its late shield-building stage, whereas recent magmatic evolution at Tenerife occurs primarily at lower temperatures in small, shallower magma systems formed during its post–basaltic shield stage. Differentiation takes millennia or less.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-17
    Description: Bowers Ridge is an similar to 700 km long arcuate ridge behind the Central Aleutian Arc in the Bering Sea. The lack of age and geochemical data for the ridge has hampered the development of geodynamic models for the evolution of the North Pacific and the Aleutian-Bering Sea region. Here we present the first geochemical and Ar-40/Ar-39 age data for the volcanic basement of Bowers Ridge and a seamount from the western end of the ridge sampled during R/V Sonne cruise SO201-1b. The northern Bowers Ridge basement (26-32 Ma) consists of mafic to intermediate calc-alkaline rocks with adakite-like (Sr/Y = 33-53, La-N/Yb-N = 3.3-7.8), high field strength element (HFSE)-depleted (e.g., Nb-N/La-N = 0.07-0.31) trace element patterns and Sr-Nd-Pb isotope compositions within the Western Aleutian Arc array, implying magma generation above an obliquely subducting slab. The seamount samples (22-24 Ma) are HFSE-rich alkaline olivine basalts (La-N/Yb-N = 3.3-3.9, Nb-N/La-N = 1.0-1.4) with minor arc-type trace element signatures (Pb-N/Ce-N = 1.4-1.6, K-N/Nb-N = 1.7-1.9) but with Pacific mid-oceanic-ridge basalt (MORB)-like isotopic compositions, pointing to an origin by small-degree decompression melting from slightly subduction-modified mantle. The geochemistry of the recovered rocks can be explained by highly oblique subduction along the northern part of Bowers Ridge in its present-day configuration, consistent with an in-situ origin of Bowers Ridge as a Cenozoic island arc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-18
    Description: Seamounts can provide conduits for the entry and exit of hydrothermal fluids in ocean basins. However, only a few ridge flank hydrothermal systems that discharge through seamounts have been discovered, all located on relatively young crust. We have retrieved samples from 126 m.y. old Henry Seamount, an extinct volcano near the youngest Canary island of El Hierro, that provide evidence for Holocene low-temperature hydrothermal fluid discharge. This is the first documented finding of such activity at the Canary archipelago. The samples include shells from vesicomyid clams 〈18.6 k.y. old, massive barite, and trachytes that are pervasively barite metasomatized. Sulfur, oxygen, and strontium isotope ratios of barite indicate that the fluid contained residual sulfate from microbial reduction at the recharge site and reacted with basement rocks. Recharge probably occurred at basement outcrops of El Hierro's submarine flank at 25–30 km distance, the driving force for hydrothermal circulation through old crust being provided by increased basal heat flow from Canary magmatism. The data show that island flanks may provide important recharge sites for seawater circulation and that even old and small seamounts can contribute to heat and mass exchange between ocean crust and seawater.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-10
    Description: Laser probe Ar-40/Ar-39 dating of quartz phenocrysts with rhyolite glass inclusions from the Bishop Tuff air-fall and ignimbrite deposits reveals that the Long Valley magma system existed as a long-lived silicic magma chamber throughout most of the Pleistocene. Sanidine phenocryst and matrix glass analyses show that the Bishop Tuff eruption occurred at 759 +/- 1 to 761 +/- 1 ha, Initial and radiogenic Ar isotope ratios indicate isotopic equilibrium between the sanidine phenocrysts and their host melt at the time of eruption. The quartz phenocrysts, in contrast, the most abundant phenocryst phase of the Bishop rhyolite, crystallized, trapped their glass inclusions, and became a closed system with respect to Ar at 1.89 +/- 0.03 to 2.3 +/- 0.3 Ma. Consequently, the Bishop rhyolite magma already resided in the Long Valley basement and had formed most of its quartz phenocrysts similar to 1.1 m.y. before its principal eruption, providing important constraints on the longevity of large silicic magma chambers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-09-26
    Description: A 6-m.y.-long composite marine record of explosive silicic volcanism from five Ocean Drilling Program sites in the subpolar North Atlantic was compared with several marine records of global and local paleoclimate proxies (benthic δ18O and ice-rafted debris records). Coarsening and high frequency of occurrence of Icelandic tephras were recorded in 3.6–3 Ma sediments, suggesting that these tephras were dispersed farther from the source by enhanced westerly winds over the subpolar North Atlantic. The 40Ar/39Ar ages were determined by laser probe on K-feldspar and biotite phenocrysts of tephras that were erupted from the Jan Mayen volcanic system. Compared to the tuned paleomagnetic age model, the 40Ar/39Ar dating (0.618 ± 0.007 Ma to 4.90 ± 0.05 Ma) yields a new age model that postdates by 155 k.y. the inception of ice rafting on the Iceland Plateau during the cold marine isotope stage M2 (i.e., 3.3–3.14 Ma).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...