ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (2)
  • GSA, Geological Society of America  (1)
  • 1
    Publication Date: 2016-05-12
    Description: Wood-rotting fungi possess remarkably diverse extracellular oxidation mechanisms, including enzymes, such as laccase and peroxidases, and Fenton chemistry. The ability to biologically drive Fenton chemistry by the redox cycling of quinones has previously been reported to be present in both ecologically diverging main groups of wood-rotting basidiomycetes. Therefore, we investigated whether it is even more widespread among fungal organisms. Screening of a diverse selection of a total of 18 ascomycetes and basidiomycetes for reduction of the model compound 2,6-dimethoxy benzoquinone revealed that all investigated strains were capable of reducing it to its corresponding hydroquinone. In a second step, depolymerization of the synthetic polymer polystyrene sulfonate was used as a proxy for quinone-dependent Fenton-based biodegradation capabilities. A diverse subset of the strains, including environmentally ubiquitous molds, white-rot fungi, as well as peatland and aquatic isolates, caused substantial depolymerization indicative for the effective employment of quinone redox cycling as biodegradation tool. Our results may also open up new paths to utilize diverse fungi for the bioremediation of recalcitrant organic pollutants.
    Keywords: Environmental Microbiology
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-24
    Description: Genetic diseases constitute the most important cause for end-stage renal disease in children and adolescents. Mutations in the ACTN4 gene, encoding the actin-binding protein α-actinin-4, are a rare cause of autosomal dominant familial focal segmental glomerulosclerosis (FSGS). Here, we report the identification of a novel, disease-causing ACTN4 mutation (p.G195D, de novo ) in a sporadic case of childhood FSGS using next generation sequencing. Proteome analysis by quantitative mass spectrometry (MS) of patient-derived urinary epithelial cells indicated that ACTN4 levels were significantly decreased when compared with healthy controls. By resolving the peptide bearing the mutated residue, we could proof that the mutant protein is less abundant when compared with the wild-type protein. Further analyses revealed that the decreased stability of p.G195D is associated with increased ubiquitylation in the vicinity of the mutation site. We next defined the ACTN4 interactome, which was predominantly composed of cytoskeletal modulators and LIM domain-containing proteins. Interestingly, this entire group of proteins, including several highly specific ACTN4 interactors, was globally decreased in the patient-derived cells. Taken together, these data suggest a mechanistic link between ACTN4 instability and proteome perturbations of the ACTN4 interactome. Our findings advance the understanding of dominant effects exerted by ACTN4 mutations in FSGS. This study illustrates the potential of genomics and complementary, high-resolution proteomics analyses to study the pathogenicity of rare gene variants.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GSA, Geological Society of America
    In:  Geology, 34 (12). pp. 1017-1020.
    Publication Date: 2017-08-04
    Description: Nucleation of calcium carbonate on microbial cell material may have been the dominant mode of microbial carbonate formation during most of Earth's history. Current knowledge predicts that nucleation takes place on the cell surface or on extracellular polymeric substances. However, the initial nucleation steps have not been described in detail and the process remains elusive. Here we describe the bacterial nucleation of calcium carbonate at the nanometer scale. In our precipitation experiment with sulfate reducing bacteria (SRB), the bulk of calcium carbonate precipitates on hundreds of individual globules 60– 200 nm in diameter. Globules originate from the SRB cell surface but calcify significantly only when released to the culture medium. Similar globules have been observed, albeit at a much larger scale, in other bacterial precipitation experiments and in many natural microbial carbonates, suggesting that the process we describe could be an important step in microbial calcification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...