ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-05
    Description: The West Iberia Lithosphere and Asthenosphere Structure (WILAS) project densely covered Portugal with broadband seismic stations for 2 yrs. Here we provide an overview of the deployment, and we characterize the network ambient noise and its sources. After explaining quality control, which includes the assessment of sensor orientation, we characterize the background noise in the short-period (SP), microseismic, and long-period (LP) bands. We observe daily variations of SP noise associated with anthropogenic activity. Temporary and permanent stations present very similar noise levels at all periods, except at horizontal LPs, where temporary stations record higher noise levels. We find that median noise levels are extremely homogeneous across the network in the microseismic band (3–20 s) but vary widely outside this range. The amplitudes of microseismic noise display a strong seasonal variation. The seasonality is dominated by very-long-period double-frequency microseisms (8 s), probably associated with winter storms. Stacks of ambient noise amplitudes show that some microseismic noise peaks are visible across the whole ground-motion spectrum, from 0.3 to 100 s. Periods of increased microseismic amplitudes generally correlate with ocean conditions offshore of Portugal. Some seismic records display an interesting 12 hr cycle of LP (100-s) noise, which might be related to atmospheric tides. Finally, we use plots of power spectral density versus time to monitor changes in LP instrumental response. The method allows the identification of the exact times at which LP response changes occur, which is required to improve the understanding of this instrumental artifact and to eventually correct data. Online Material: Figures and movie illustrating the variation of seismic noise amplitudes with sensor type, time, and soil type.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Local seismic network in Northern Chile, Southern Bolivia. (Grant-number: GIPP199604) Waveform data is available from the GEOFON data centre. License: “Creative Commons Attribution-ShareAlike 4.0 International License” (CC BY-SA).
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Central Andes ; magmatic arc ; local seismicity ; temporary local seismic network ; Northern Chile ; Southern Bolivia ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~70G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The lithosphere of Iberia has been formed through a number of processes of continental collision and extension. In Lower Paleozoic, the collision of three tectonics blocks produced the Variscan Orogeny, the main event of formation of the Iberian lithosphere. The subsequent Mesozoic rifting and breakup of the Pangea had a profound effect on the continental crust of the western border of Iberia. Since the Miocene, the southern interaction between Africa and Iberia is characterized by a diffuse convergent margin that originates a vast area of deformation. The impact of this complex tectonic in the structure of the Iberian Lithosphere remains an incognito, especially in its western part beneath Portugal. While the surface geology is considerably studied and documented, the crustal and lithospheric structures are not well constrained. The existing knowledge relating the observed surface geology and Lithospheric deep structures is sparse and sometimes incoherent. The seismic activity observed along West Iberia is intensely clustered on few areas, namely on north Alentejo, Estremadura and Regua-Verin fault systems. Some of the problems to address are: What is the relation between surface topography and the deep crustal/lithospheric structure? How was it influenced by the past tectonic events? Which was the deep driving factor behind the tectonic units observed at surface: Lithosphere-Astenosphere boundary structure or deeper mantle structure? How the upper mantle and the Lithosphere-Astenosphere transition zone accommodated the past subduction? Which is its role and influence of the several tectonic units, and their contacts, in the present tectonic regime and in the stress field observed today? Is the anomalous seismicity and associated crustal deformation rates, due to an inherited structure from past orogenies? The main goal of this work is a 3D detailed image of the “slice” of the Earth beneath Western Iberia, by complementing the permanent seismic networks operating in Portugal and Spain. The different scales involved require the usage of several passive seismological methods: Local-Earthquake Tomography for fine structure of seismogenic areas, ambient noise tomography for regional crustal structure, Receiver Functions for Lithospheric structure and Surface-wave tomography for large scale Listosphere-Astenosphere structure. Crustal and Mantle seismic anisotropy analysis, coupled with source analysis and correlation with current geodetic measurements will allow establishing a reference 3D anisotropy model of present and past processes.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Western Iberia ; seismotectonics ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-31
    Description: Abstract
    Description: The SWATH-D experiment is dense deployment of 154 seismic stations in the Central and Eastern Alps between Italy and Austria, complementing the larger-scale sparser AlpArray Seismic Network (AASN). SWATH-D will provide high resolution images from the surface into the upper mantle, and allow observations of local seismicity. SWATH-D focuses on a key area of the Alps where the hypothesized flip in subduction polarity has been suggested, and where an earlier seismic profile (TRANSALP) has imaged a jump in the Moho. Where mains power is available (at ca. 80 sites) stations are providing realtime data via the cellphone network and are equipped with Güralp CMG-3EPSC (60s) seismometers and Earth Data Recorders EDR-210. The rest of the stations are offline and consist mainly of Nanometrics Trillium Compact (120s) and Güralp CMG-3EPSC (60s) seismometers equipped with either Omnirecs CUBE3 or PR6-24 Earth Data Loggers. All stations are equipped with external GPS antennas and the sampling rate is 100 Hz (Heit, et al., 2018). The network will operate for 2 years starting in July 2017. The Swath-D data will be used directly by 20 individual proposals of the MB-4D Priority Program (Mountain Building Processes in Four Dimensions, 2017) of the German Research Foundation (DFG) and data products derived from it will contribute to additional 13 proposals. SWATH-D is thus an important link between the MB-4D Priority Program and the international AlpArray communities and a scientific service to many of the proposals within the DFG Priority Program. Waveform data are available from the GEOFON data centre, under network code ZS, and are embargoed until August 2023. After the end of embargo, data will be openly available under CC-BY 4.0 license according to GIPP-rules.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 DATA SEARCH AND RETRIEVAL ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 ARCHIVING ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; seismology
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-21
    Description: Abstract
    Description: A temporary seismic network was installed in Sri Lanka for a time period of 13 months. The stations were equipped with Earth Data EDR-210 digital recorders and Trillium 120 PA, Güralp C3E and Güralp CMG-3ESP broadband sensors. Main aim of the network is to shed light on the crustal and upper mantle structure beneath the island. Also local seismic activity is studied.
    Keywords: Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: 295GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-27
    Description: We propose to investigate the structure and evolution of the Main Pamir Thrust (MPT) with a high-density seismological array. The MPT, with its surface expression along the east-west trending Alai Valley, marks the northern boundary of the Pamir. The Alai Valley, separating the Pamir and the Tien Shan, constitutes the last vestige of a formerly continuous basin that linked the Tarim and the Tajik Basins. The MPT manifests itself as a place of high seismic activity with frequently occurred disastrous earthquakes. The array is about 50 km long, consisted of 90 three-component geophones (stations G?? and C??) and 10 Trillium-Compact seismometers (stations T??), and equipped with 100 CUBE dataloggers. We will construct a high-resolution receiver function profile to image the MPT and accurately locate the local earthquakes associated with the MPT. Funded by BMBF, within the framework of CaTeNA project – Climatic and Tectonic Natural Hazards in Central Asia. Waveform data are available from the GEOFON data centre, under network code 7A and are embargoed until Jan 2024.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-27
    Description: We study the crustal structure of Sri Lanka by analyzing data from a temporary seismic network deployed in 2016-2017 (Seneviratne et al., 2016) to shed light on the amalgamation process from the geophysical perspective. Rayleigh wave phase dispersion from ambient noise cross-correlation and receiver functions were jointly inverted using a transdimensional Bayesian approach (Bodin et al., 2012, Dreiling et al., 2019).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: The SWATH-D experiment is dense deployment of 154 seismic stations in the Central and Eastern Alps between Italy and Austria, complementing the larger-scale sparser AlpArray Seismic Network (AASN). SWATH-D will provide high resolution images from the surface into the upper mantle, and allow observations of local seismicity. SWATH-D focuses on a key area of the Alps where the hypothesized flip in subduction polarity has been suggested, and where an earlier seismic profile (TRANSALP) has imaged a jump in the Moho. Where mains power is available (at ca. 80 sites) stations are providing realtime data via the cellphone network and are equipped with Güralp CMG-3EPSC (60s) seismometers and Earth Data Recorders EDR-210. The rest of the stations are offline and consist mainly of Nanometrics Trillium Compact (120s) and Güralp CMG-3EPSC (60s) seismometers equipped with either Omnirecs CUBE3 or PR6-24 Earth Data Loggers. All stations are equipped with external GPS antennas and the sampling rate is 100 Hz (Heit, et al., 2018). The network will operate for 2 years starting in July 2017. The Swath-D data will be used directly by 20 individual proposals of the MB-4D Priority Program (Mountain Building Processes in Four Dimensions, 2017) of the German Research Foundation (DFG) and data products derived from it will contribute to additional 13 proposals. SWATH-D is thus an important link between the MB-4D Priority Program and the international AlpArray communities and a scientific service to many of the proposals within the DFG Priority Program. Waveform data are available from the GEOFON data centre, under network code ZS, and are embargoed until August 2023. After the end of embargo, data will be openly available under CC-BY 4.0 license according to GIPP-rules.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...