ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-12-21
    Description: The purpose of this collection is to provide a forum to integrate pre-clinical and clinical investigations regarding the long-term consequences of adolescent exposure to drugs of abuse. Adolescence is characterized by numerous behavioral and biological changes, including substantial neurodevelopment. Behaviorally, adolescents are more likely to engage in risky activities and make impulsive decisions. As such, the majority of substance use begins in adolescence, and an earlier age of onset of use (〈15 yr) is strongly associated with the risk for developing a substance use disorder later in life. Furthermore, adolescent drug use may negatively impact ongoing neurological development, which could lead to long-term cognitive and emotional deficits. A large number of clinical studies have investigated both the acute and long-term effects of adolescent drug use on functional outcomes. However, the clinical literature contains many conflicting findings, and is often hampered by the inability to know if functional differences existed prior to drug use. Moreover, in human populations it is often very difficult to control for the numerous types of drugs, doses, and combinations used, not to mention the many other environmental factors that may influence adult behavior. Therefore, an increase in the number of carefully controlled studies using relevant animal models has the potential to clarify which adolescent experiences, particularly what drugs used when, have long-term negative consequences. Despite the advantages of animal model systems in clarifying these issues, the majority of pre-clinical addiction research over the past 50+ years has been conducted in adult animals. Moreover, few addiction-related studies have investigated the long-term neurocognitive consequences of drug exposure at any age. In the past 10 years of so, however, the field of adolescent drug abuse research has burgeoned. To date, the majority of this research has focused on adolescent alcohol exposure using a variety of animal models. The results have given the field important insight into why adolescents are more likely to drink alcohol to excess relative to adults, and the danger of adolescent alcohol use (e.g., in leading to a persistence of excessive drinking in adulthood). More recently, research regarding the effects of adolescent exposure to other drugs of abuse, including nicotine, cocaine, and cannabinoids has expanded. Therefore, we are at unique point in time, when emerging results from carefully controlled pre-clinical studies can inform the sometimes confusing clinical literature. In addition, we expect an influx of prospective clinical studies in response to a cross-institute initiative at NIH, known as the ABCD grant. Several institutes are enrolling children prior to adolescence (and the initiation of drug use), in order to control for pre-existing neurobiological and neurobehavioral differences and to monitor the age of initiation and amount of drug used more carefully than is possible using retrospective designs.
    Keywords: R5-920 ; RC321-571 ; RC435-571 ; RM1-950 ; Q1-390 ; alcohol ; stress ; nicotine ; cocaine ; ketamine ; methamphetamine ; cannabinoid ; prefrontal cortex ; juvenile ; sex differences ; bic Book Industry Communication::M Medicine
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-05
    Description: This special issue reviews state-of-the-art approaches to the biophysical roots of cognition. These approaches appeal to the notion that cognitive capacities serve to optimize responses to changing external conditions. Crucially, this optimisation rests on the ability to predict changes in the environment, thus allowing organisms to respond pre-emptively to changes before their onset. The biophysical mechanisms that underwrite these cognitive capacities remain largely unknown; although a number of hypotheses has been advanced in systems neuroscience, biophysics and other disciplines. These hypotheses converge on the intersection of thermodynamic and information-theoretic formulations of self-organization in the brain. The latter perspective emerged when Shannon’s theory of message transmission in communication systems was used to characterise message passing between neurons. In its subsequent incarnations, the information theory approach has been integrated into computational neuroscience and the Bayesian brain framework. The thermodynamic formulation rests on a view of the brain as an aggregation of stochastic microprocessors (neurons), with subsequent appeal to the constructs of statistical mechanics and thermodynamics. In particular, the use of ensemble dynamics to elucidate the relationship between micro-scale parameters and those of the macro-scale aggregation (the brain). In general, the thermodynamic approach treats the brain as a dissipative system and seeks to represent the development and functioning of cognitive mechanisms as collective capacities that emerge in the course of self-organization. Its explicanda include energy efficiency; enabling progressively more complex cognitive operations such as long-term prediction and anticipatory planning. A cardinal example of the Bayesian brain approach is the free energy principle that explains self-organizing dynamics in the brain in terms of its predictive capabilities – and selective sampling of sensory inputs that optimise variational free energy as a proxy for Bayesian model evidence. An example of thermodynamically grounded proposals, in this issue, associates self-organization with phase transitions in neuronal state-spaces; resulting in the formation of bounded neuronal assemblies (neuronal packets). This special issue seeks a discourse between thermodynamic and informational formulations of the self-organising and self-evidencing brain. For example, could minimization of thermodynamic free energy during the formation of neuronal packets underlie minimization of variational free energy?
    Keywords: RC321-571 ; Q1-390 ; consciousness ; understanding ; Markov blanket ; Hebbian assembly ; neuronal packet ; Bayesian brain ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-05
    Description: Noninvasive brain stimulation (including Transcranial Magnetic Stimulation (TMS) and Transcranial Current Brain Stimulation (TCS)) can be used both experimentally and therapeutically. In the experimental domain TMS can be applied in single pulses to depolarize a small population of neurons in a targeted brain region. This protocol can be used, for example, to map cortical motor outputs, study central motor conduction time, or evaluate the cortical silent period (a measure of intracortical inhibition) all of which are relevant to neurodevelopment. TMS can also be applied in pairs of pulses (paired pulse stimulation, ppTMS) where two pulses are presented in rapid succession to study intracortical inhibition and facilitation. Trains of repeated TMS (rTMS) pulses can be applied at various stimulation frequencies and patterns to modulate local cortical excitability beyond the duration of the stimulation itself. Depending on the parameters of stimulation the excitability can be either facilitated or suppressed. TCS (including Transcranial Direct Current Stimulation (tDCS), alternating current (tACS), and random noise current stimulation (tRNS) also have the potential to modulate cortical excitability and have also been used to study and modulate cortical activity in healthy and patient populations. The after-effects of rTMS and TCS are thought to be related to changes in efficacy (in either the positive or negative direction) of synaptic connections of the neurons being stimulated, thus these techniques have been used to study and modulate cortical plasticity mechanisms in a number of populations. Recently, researchers have begun to apply these techniques to the study of neurodevelopmental mechanisms as well as the pathophysiology and development of novel treatments for neurodevelopmental disorders. Though there is much promise, caution is warranted given the vulnerability of pediatric and clinical populations and the potential that these techniques have to modify circuit development in a cortex that is in a very dynamic state. This Research Topic hopes to provide an opportunity to share ideas across areas (human and animal researchers, clinicians and basic scientists). We are particularly interested in papers that address issues of choosing a protocol (intensity, frequency, location, coil geometry etc.), populations where noninvasive brain stimulation may have direct impact on diagnostics and treatment, as well as the safety and ethics of applying these techniques in pediatric populations. As many may not be aware of the potential and limitations of noninvasive brain stimulation and its use for research and treatment in this area, this Research Topic promises to have broad appeal. Submissions for all Frontiers article types are encouraged.
    Keywords: RC321-571 ; Q1-390 ; Transcranial Magnetic Stimulation ; development ; Autism Spectrum Disorder ; Depression ; Neurodevelopmental Disorders ; Pediatric Stroke ; Safety ; transcranial direct current stimulation ; noninvasive brain stimulation ; pediatric ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-05
    Description: Everyday we vicariously experience a range of states that we observe in other people: we may "feel" embarrassed when witnessing another making a social faux pas, or we may feel sadness when we see a loved one upset. In some cases this process appears to be implicit. For instance, observing pain in others may activate pain-related neural processes but without generating an overt feeling of pain. In other cases, people report a more literal, conscious sharing of affective or somatic states and this has sometimes been described as representing an extreme form of empathy. By contrast, there appear to be some people who are limited in their ability to vicariously experience the states of others. This may be the case in several psychiatric, neurodevelopmental, and personality disorders where deficits in interpersonal understanding are observed, such as schizophrenia, autism, and psychopathy. In recent decades, neuroscientists have paid significant attention to the understanding of the “social brain,” and the way in which neural processes govern our understanding of other people. In this Research Topic, we wish to contribute towards this understanding and ask for the submission of manuscripts focusing broadly on the neural underpinnings of vicarious experience. This may include theoretical discussion, case studies, and empirical investigation using behavioural techniques, electrophysiology, brain stimulation, and neuroimaging in both healthy and clinical populations. Of specific interest will be the neural correlates of individual differences in traits such as empathy, how we distinguish between ourselves and other people, and the sensorimotor resonant mechanisms that may allow us to put ourselves in another's shoes.
    Keywords: RC321-571 ; Q1-390 ; synaesthesia ; Pain ; social cognition ; social neuroscience ; vicarious experience ; Empathy ; Personality ; Mirror Neurons ; Touch ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: Could we understand, in biological terms, the unique and fantastic capabilities of the human brain to both create and enjoy art? In the past decade neuroscience has made a huge leap in developing experimental techniques as well as theoretical frameworks for studying emergent properties following the activity of large neuronal networks. These methods, including MEG, fMRI, sophisticated data analysis approaches and behavioral methods, are increasingly being used in many labs worldwide, with the goal to explore brain mechanisms corresponding to the artistic experience. The 37 articles composing this unique Frontiers Research Topic bring together experimental and theoretical research, linking state-of-the-art knowledge about the brain with the phenomena of Art. It covers a broad scope of topics, contributed by world-renowned experts in vision, audition, somato-sensation, movement, and cinema. Importantly, as we felt that a dialog among artists and scientists is essential and fruitful, we invited a few artists to contribute their insights, as well as their art. Joan Miró said that “art is the search for the alphabet of the mind.” This volume reflects the state of the art search to understand neurobiological alphabet of the Arts. We hope that the wide range of articles in this volume will be highly attractive to brain researchers, artists and the community at large.
    Keywords: RC321-571 ; Q1-390 ; emotion ; neuroesthetics ; performing-arts ; creativity ; perception ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-05
    Description: Stroke remains one of the most devastating diseases in industrialized countries. Recanalization of the occluded arterial vessel using thrombolysis is the only causal therapy available. However, thrombolysis is limited due to severe side effects and a limited time window. As such, only a minority of patients receives this kind of therapy, showing a need for new and innovative treatment strategies. Although neuroprotective drugs have been shown to be beneficial in a variety of experimental stroke models, they ultimately failed in clinical trials. Consequently, recent scientific focus has been put on modulation of post-ischemic neuroregeneration, either via stimulation of endogenous neurogenesis or via application of exogenous stem cells or progenitor cells. Neurogenesis persists within the adult brain of both rodents and primates. As such, neural progenitor cells (NPCs) are found within distinct niches like the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone of the dentate gyrus. Cerebral ischemia stimulates these astrocyte-like progenitor cells, upon which NPCs proliferate and migrate towards the site of lesion. There, NPCs partly differentiate into mature neurons, without significantly being integrated into the residing neural network. Rather, the majority of new-born cells dies within the first weeks post-stroke, leaving post-ischemic neurogenesis a phenomenon of unknown biological significance. Since NPCs do not replace lost brain tissue, beneficial effects observed in some studies after either stimulated or protected neurogenesis are generally contributed to indirect effects of these new-born cells. The precise identification of appropriated cellular mediators, however, is still elusive. How do these mediators work? Are they soluble factors or maybe even vesicular structures emanating from NPCs? What are the cues that guide NPCs towards the ischemic lesion site? How can post-ischemic neurogenesis be stimulated? How can the poor survival of NPCs be increased? In order to support post-ischemic neurogenesis, a variety of research groups have focused on application of exogenous stem/progenitor cells from various tissue sources. Among these, cultivated NPCs from the SVZ and mesenchymal stem cells (MSCs) from the bone marrow are frequently administered after induction of stroke. Although neuroprotection after delivery of stem/progenitor cells has been shown in various experimental stroke models, transplanted cells are usually not integrated in the neural network. Again, the vast amount of grafted cells dies or does not reach its target despite profound neuroprotection, also suggesting indirect paracrine effects as the cause of neuroprotection. Yet, the factors being responsible for these observations are under debate and still have to be addressed. Is there any “optimal” cell type for transplantation? How can the resistance of grafted cells against a non-favorable extracellular milieu be increased? What are the molecules that are vital for interaction between grafted cells and endogenous NPCs? The present research topic seeks to answer - at least in part - some of the aforementioned questions. Although the research topic predominantly focuses on experimental studies (and reviews alike), a current outlook towards clinical relevance is given as well.
    Keywords: RC321-571 ; Q1-390 ; Stroke ; cerebral ischemia ; mesenchymal stem cells (MSCs) ; Neural progenitor cells (NPCs) ; Transplantation ; Neurogenesis ; Neuroregeneration ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-12-21
    Description: Recent years have brought new insights to the understanding of Parkinson’s disease, impact of exercise and sound displays in rehabilitation and movement facilitation. There is growing evidence that auditory signals in the environment can provide a temporal template for movement and change the mode of motor control from intrinsic to extrinsic; habitual to goal-directed, enabling enhanced motor performance in patients. In addition, forced exercise rate studies show that exercising at the pace of healthy adults can have potential neuroprotective benefits for patients. Many research groups have explored the use of auditory cues (such as rhythmical auditory training) in improving gait and upper limb movement parameters. Cues are usually either intermittent (metronome) or continuous (dynamic sound displays). Similarly, dance based interventions suggest that patients benefit from additional sensory information (i.e. the temporal structure embedded in music and proprioceptive information from a dancing partner) that facilities movement. On the contrary, studies dedicated to auditory perception and motor timing report an impaired ability of patients to perceive and synchronise with complex rhythmical structures (i.e. causing an inability to play musical instruments). With the growth of modern technology and the increasing portability of hi-specification devices (such as smart phones), new research questions on the design of interventions are beginning to emerge as we strive for more efficient therapeutic approaches. In this Research Topic we wanted to bring together top scientists from the movement disorder, motor control and sound related studies along with therapists. That way, we can engage in cross-disciplinary and challenging scientific debate about future rehabilitation avenues and frontiers for Parkinson’s disease patients.
    Keywords: R5-920 ; RC346-429 ; RC321-571 ; BF1-990 ; Q1-390 ; Parkinson's disease ; extrinsic and intrinsic motor control ; Ras ; timing ; Music Therapy ; Dance Therapy ; Cueing ; Perception-Action Coupling ; forced-pace exercise ; bic Book Industry Communication::M Medicine
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-05
    Description: Odors are powerful stimuli that can evoke emotional states, and support learning and memory. Decades of research have indicated that the neural basis for this strong "odor-emotional memory" connection is due to the uniqueness of the anatomy of the olfactory pathways. Indeed, unlike the other sensory systems, the sense of smell does not pass through the thalamus to be routed to the cortex. Rather, odor information is relayed directly to the limbic system, a brain region typically associated with memory and emotional processes. This provides olfaction with a unique and potent power to influence mood, acquisition of new information, and use of information in many different contexts including social interactions. Indeed, olfaction is crucially involved in behaviors essential for survival of the individual and species, including identification of predators, recognition of individuals for procreation or social hierarchy, location of food, as well as attachment between mating pairs and infant-caretaker dyads. Importantly, odors are sampled through sniffing behavior. This active sensing plays an important role in exploratory behaviors observed in the different contexts mentioned above. Odors are also critical for learning and memory about events and places and constitute efficient retrieval cues for the recall of emotional episodic memories. This broad role for odors appears highly preserved across species. In addition, the consistent early developmental emergence of olfactory function across diverse species also provides a unique window of opportunity for analysis of myriad behavioral systems from rodents to nonhuman primates and humans. This, when combined with the relatively conserved organization of the olfactory system in mammals, provides a powerful framework to explore how complex behaviors can be modulated by odors to produce adaptive responses, and to investigate the underlying neural networks. The present research topic brings together cutting edge research on diverse species and developmental stages, highlighting convergence and divergence between humans and animals to facilitate translational research.
    Keywords: RC321-571 ; Q1-390 ; Odor preference ; olfactory memory ; sniffing behavior ; Olfaction ; odor aversion ; Social odors ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-11
    Description: Enzymes are nature’s biocatalysts empowered with high catalytic power and remarkable substrate specificity. Enzymes perform a wide range of functions throughout nature, and guide the biochemistry of life with great precision. The majority of enzymes perform under conditions considered normal for mesophilic, neutrophilic, terrestrial microorganisms. However, the Earth’s biosphere contains several regions that are extreme in comparison, such as hypersaline lakes and pools, hydrothermal vents, cold oceans, dry deserts and areas exposed to intensive radiation. These areas are inhabited by a large number of extremophilic microorganisms which produce enzymes capable of functioning in unusual conditions. There is an increasing biotechnological and industrial demand for enzymes stable and functioning in harsh conditions, and over the past decade screening for, isolation and production of enzymes with unique and extreme properties has become one of the foremost areas of biotechnology research. The development of advanced molecular biology tools has facilitated the quest for production of enzymes with optimized and extreme features. These tools include large-scale screening for potential genes using metagenomics, engineering of enzymes using computational techniques and site-directed mutagenesis and molecular evolution techniques. The goal of this Research Topic is to present reports on latest advances in enzymes from all types of extreme environments. Contributions dealing with isolation of enzymes from extremophilic microorganisms or directly from natural environments, screening for and expression of enzymes with extreme properties using metagenomic approaches are welcome. In addition, contributions dealing with all forms of biocatalyst production and improvement are welcome, such as fermentation technology, protein engineering, directed evolution, rational design, and immobilization techniques.
    Keywords: TP248.13-248.65 ; TA1-2040 ; Biotechnology ; Biocatalysis ; alkaliphile ; psychrophile ; extremophile ; Extremozyme ; halophile ; industrial enzymes ; thermophile ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TC Biochemical engineering::TCB Biotechnology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-05
    Description: The brain and immune system are involved in an intricate network of bidirectional communication. This relationship is vital for optimal physiological and psychological development and functioning but can also result in unwanted outcomes. In particular, this interaction plays an important role in cognition, mood and behaviour. Neuroinflammation is known to contribute to neurological and affective disorders including impaired learning and memory, depressive, anxiety and schizoaffective symptoms, as well as pain. The development of these conditions often occurs on the backdrop of pre-existing physical illnesses which give rise to increased activation of the immune system, such as cancer, obesity, infection and autoimmune disorders. Similarly, psychological states can alter regulation of the immune system. This has been most extensively studied in the context of stress and immune function. Understanding the underlying mechanisms that lead to the onset of inflammation-induced neuropathology and stress-induced immune suppression will contribute to the development of novel and effective treatment strategies for both the disease and its neurological side effects. In this research topic we explored the relationship between the immune system and the brain throughout life. We include both original research and review papers from animal, clinical and molecular perspectives.
    Keywords: RC321-571 ; Q1-390 ; neuroimmune ; Obesity ; neuroendocrine ; proinflammatory ; Aging ; Neuroinflammation ; Depression ; Mood Disorders ; Microglia ; Perinatal programming ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...