ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences  (17)
  • ASTROPHYSICS
  • Animals
  • Chemical Engineering
  • Humans
  • LUNAR AND PLANETARY EXPLORATION
  • Life and Medical Sciences
  • Lunar and Planetary Science and Exploration
  • Frontiers Media SA  (18)
  • 1
    Publication Date: 2024-04-05
    Description: The tale of cyclic GMP has been astonishing. Having overcome an initial disbelief, cyclic GMP has risen to its present eminence as a premium cellular signal transduction messenger of not only hormonal extracellular but also of the intracellular signals. This research topic focuses on the pathways and functions of membrane guanylate cyclases in different tissues of the body and their interplay with intracellular sensory signals where in many cases, cyclic GMP along with Ca2+ have taken on roles as synarchic co-messengers.
    Keywords: RC321-571 ; Q1-390 ; Glaucoma ; Visceral Pain ; Calcium ; membrane guanylate cyclase ; ANF-RGC ; Gene Therapy ; Cyclic GMP ; synaptic plasticity ; trafficking ; ROS-GC ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: Interaction between language and cognition remains an unsolved scientific problem. What are the differences in neural mechanisms of language and cognition? Why do children acquire language by the age of six, while taking a lifetime to acquire cognition? What is the role of language and cognition in thinking? Is abstract cognition possible without language? Is language just a communication device, or is it fundamental in developing thoughts? Why are there no animals with human thinking but without human language? Combinations even among 100 words and 100 objects (multiple words can represent multiple objects) exceed the number of all the particles in the Universe, and it seems that no amount of experience would suffice to learn these associations. How does human brain overcome this difficulty?
    Keywords: RC321-571 ; Q1-390 ; Brain and functional imaging ; Language ; Cognition ; Emotions ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-03-31
    Description: Echolocation has evolved in different groups of animals, from bats and cetaceans to birds and humans, and enables localization and tracking of objects in a dynamic environment, where light levels may be very low or absent. Nature has shaped echolocation, an active sense that engages audiomotor feedback systems, which operates in diverse environments and situations. Echolocation production and perception vary across species, and signals are often adapted to the environment and task. In the last several decades, researchers have been studying the echolocation behavior of animals, both in the air and underwater, using different methodologies and perspectives. The result of these studies has led to rich knowledge on sound production mechanisms, directionality of the sound beam, signal design, echo reception and perception. Active control over echolocation signal production and the mechanisms for echo processing ultimately provide animals with an echoic scene or image of their surroundings. Sonar signal features directly influence the information available for the echolocating animal to perceive images of its environment. In many echolocating animals, the information processed through echoes elicits a reaction in motor systems, including adjustments in subsequent echolocation signals. We are interested in understanding how echolocating animals deal with different environments (e.g. clutter, light levels), tasks, distance to targets or objects, different prey types or other food sources, presence of conspecifics or certain predators, ambient and anthropogenic noise. In recent years, some researchers have presented new data on the origins of echolocation, which can provide a hint of its evolution. Theoreticians have addressed several issues that bear on echolocation systems, such as frequency or time resolution, target localization and beam-forming mechanisms. In this Research Topic we compiled recent work that elucidates how echolocation – from sound production, through echolocation signals to perception- has been shaped by nature functioning in different environments and situations. We strongly encouraged comparative approaches that would deepen our understanding of the processes comprising this active sense.
    Keywords: QP1-981 ; Q1-390 ; bats ; Biosonar ; Humans ; marine mammals ; sensory biology ; Birds ; Behavior ; Communication ; thema EDItEUR::M Medicine and Nursing::MF Pre-clinical medicine: basic sciences::MFG Physiology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-05
    Description: Neuropsychiatric disorders such as schizophrenia, bipolar disorder, depression, anxiety disorders, and other mental disorders constitute about 13% of the global burden of disease surpassing both cardiovascular disease and cancer. The total cost worldwide of these diseases is estimated to exceed 100 million disability-adjusted life years. In order to begin to address this important problem, the present Research Topic brings together a group of leading affective neuroscience researchers to present their state-of-the-art findings using an affective neuroscience approach to investigate the spectrum of neuropsychiatric disorders from patients to those at risk. They focus on different aspects of the emotional and social cognitive disturbances which are core features of neuropsychiatric disorders. While progress has been slow over last couple of decades, we are finally beginning to glimpse some of the underlying neural mechanisms of the emotional and social cognitive disturbances in patients and those at risk. With the technological advances in affective neuroscience and neuroimaging presented in this volume, we hope that progress will be much swifter in the coming years such that we can provide better care for patients and those at risk.
    Keywords: RC321-571 ; Q1-390 ; Neuroimaging ; stress ; reward processing ; Neuropsychiatry ; Affective Neuroscience ; Pleasure ; impulsivity ; Anhedonia ; computational neuroscience ; compulsivity ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-05
    Description: Music processing in severely brain-injured patients with disorders of consciousness has been an emergent field of interest for over 30 years, spanning the disciplines of neuroscience, medicine, the arts and humanities. Disorders of consciousness (DOC) is an umbrella term that encompasses patients who present with disorders across a continuum of consciousness including people who are in a coma, in vegetative state (VS)/have unresponsive wakefulness syndrome (UWS), and in minimally conscious state (MCS). Technological developments in recent years, resulting in improvements in medical care and technologies, have increased DOC population numbers, the means for investigating DOC, and the range of clinical and therapeutic interventions under validation. In neuroimaging and behavioural studies, the auditory modality has been shown to be the most sensitive in diagnosing awareness in this complex population. As misdiagnosis remains a major problem in DOC, exploring auditory responsiveness and processing in DOC is, therefore, of central importance to improve therapeutic interventions and medical technologies in DOC. In recent years, there has been a growing interest in the role of music as a potential treatment and medium for diagnosis with patients with DOC, from the perspectives of research, clinical practice and theory. As there are almost no treatment options, such a non-invasive method could constitute a promising strategy to stimulate brain plasticity and to improve consciousness recovery. It is therefore an ideal time to draw together specialists from diverse disciplines and interests to share the latest methods, opinions, and research on this topic in order to identify research priorities and progress inquiry in a coordinated way. This Research Topic aimed to bring together specialists from diverse disciplines involved in using and researching music with DOC populations or who have an interest in theoretical development on this topic. Specialists from the following disciplines participated in this special issue: neuroscience; medicine; music therapy; clinical psychology; neuromusicology; and cognitive neuroscience.
    Keywords: RC321-571 ; BF1-990 ; Q1-390 ; disorders of consciousness ; Coma ; sensory stimulation ; Brain Injury ; Minimally Conscious State ; Music ; Music Therapy ; Arousal ; Rehabilitation ; vegetative state ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-05
    Description: There is now strong evidence demonstrating that the brain simulates action and other functions. Such action simulation can be evoked through conscious mental rehearsal of movement or imagery, but also through passive action observation watching movements in others. Furthermore, there is evidence to suggest that mental rehearsal of movement, or mental practice, can produce improvements normally attributed to practising actual movements. It is currently assumed that such improvements are due to neural activation associated with action simulation. However the neuroscience of mental practice efficacy is still poorly understood. The aim of this research topic is to clarify the underlying mechanisms of mental practice, bringing evidence from cognitive neuroscience, experimental neuropsychology, sport and movement science, and clinical neurology. It also attempts to address confusion regarding the concepts of imagery and observation, which has hampered the progression of mental practice research both scientifically and applied. As well as reviews, theoretical, and position articles, this research topic includes original neuroimaging, experimental, and patient research addressing, among others, the following issues. Neuroimaging studies provide strong evidence for action simulation, but the link to behavioural change and functional outcome is weak. What is the evidence that mental practice efficacy is driven by neuroplasticity processes evoked by action simulation? This research topic includes contributions on neural correlates and behaviour with regards to imagery and action observation. Much of the mental practice efficacy evidence comes from longstanding research within sport science. However, what does mental practice entail in these contexts, and to what extent is it compatible with the cognitive neuroscience perspective of action simulation? This research topic will include contributions that consider both evidence and concepts with regards to imagery and action observation, in an attempt to build an interdisciplinary consensus on the nature and application of mental practice. Mental practice is perceived as a promising motor rehabilitation technique, but critically there is lack of clarity or consensus on what mental practice treatment should entail. It is also not clear what are the most appropriate outcomes to measure imagery ability and cognitive or behavioural change following mental practice. A further important issue that needs consideration as part of this research topic is dosage, as it is currently unclear how much mental practice is appropriate and whether this depends on patient variables such as age, cognitive functioning, motor function, or pathophysiology.
    Keywords: RC321-571 ; Q1-390 ; Mental Practice ; Cognitive neuroscience ; action simulation ; action observation ; imagery ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-05
    Description: This ebook contains a series of original publications, reviews and mini-reviews by leaders in the field that address the growing importance of the plasminogen activating system in neurobiology. The articles included cover the role of the plasminogen activating system as a key modulator of blood brain barrier permeability, and the implications of this in traumatic brain injury and in ischemic stroke. State-of-the-Art manuscripts are also included that address the regulatory mechanisms that control this important process.This ebook contains a series of original publications, reviews and mini-reviews by leaders in the field that address the growing importance of the plasminogen activating system in neurobiology. The articles included cover the role of the plasminogen activating system as a key modulator of blood brain barrier permeability, and the implications of this in traumatic brain injury and in ischemic stroke. State-of-the-Art manuscripts are also included that address the regulatory mechanisms that control this important process.
    Keywords: RC321-571 ; Q1-390 ; blood brain barrier ; ischaemic stroke ; plasminogen activation ; Traumatic Brain Injury ; Neurobiology ; Neuroserpin ; tissue-type plasminogen activator ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-05
    Description: In the 19th century, ground-breaking observations on aphasia by Broca and Wernicke suggested that language function depends on the activity of the cerebral cortex. At the same time, Wernicke and Lichtheim also elaborated the first large-scale network model of language which incorporated long-range and short-range (transcortical connections) white matter pathways in language processing. The arcuate fasciculus (dorsal stream) was traditionally viewed as the major language pathway for repetition, but scientists also envisioned that white matter tracts travelling through the insular cortex (ventral stream) and transcortical connections may take part in language processing. Modern cognitive neuroscience has provided tools, including neuroimaging, which allow the in vivo examination of short- and long-distance white matter pathways binding cortical areas essential for verbal repetition. However, this state of the art on the neural correlates of language repetition has revealed contradictory findings, with some researchers defending the role of the dorsal and ventral streams, whereas others argue that only cortical hubs (Sylvian parieto-temporal cortex [Spt]) are crucially relevant. An integrative approach would conceive that the interaction between these structures is essential for verbal repetition. For instance, different sectors of the cerebral cortex (e.g., Spt, inferior frontal gyrus/anterior insula) act as hubs dedicated to short-term storage of verbal information or articulatory planning and these areas in turn interact through forward and backward white matter projections. Importantly, white matter pathways should not be considered mere cable-like connections as changes in their microstructural properties correlate with focal cortical activity during language processing tasks. Despite considerable progress, many outstanding questions await response. The articles in this Research Topic tackle many different and critical new questions, including: (1) how white matter pathways instantiate dialogues between different cortical language areas; (2) what are the specific roles of different white matter pathways in language functions in normal and pathological conditions; (3) what are the language consequences of discrete damage to branches of the dorsal and ventral streams; 4) what are the consequences (e.g., release from inhibition) of damage to the left white matter pathways in contralateral ones and viceversa; (5) how these pathways are reorganised after brain injury; (5) can the involvement/sparing of white matter pathways be used in outcome prediction and treatment response; and (5) can the microstructure of white matter pathways be remodelled with intensive rehabilitation training or biological approaches.This Research Topic includes original studies, and opinion and review articles which describe new data as well as provocative and insightful interpretations of the recent literature on the role of white matter pathways in verbal repetition in normal and pathological conditions. A brief highlight summary of each is provided below.
    Keywords: RC321-571 ; Q1-390 ; aphasia ; temporal lobe ; Arcuate Fasciculus ; conduction aphasia ; ventral stream ; language ; repetition ; dorsal stream ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-05
    Description: Rapid corrective actions, termed automatic postural responses, are essential to counter the destabilizing effect of mechanical perturbations during natural behaviors. Previous research has demonstrated that automatic postural responses of the limbs and body share a number of capabilities in adapting to the prevailing circumstances and these abilities reflect contributions from multiple supraspinal pathways, including brainstem nuclei, basal ganglia, and primary motor cortex. However, we do not know the context-dependent contribution from specific generators, whether different neural pathways have a common role across different effectors, and how sensory and central deficits in one pathway are accommodated by those remaining. Bridging these gaps is essential to integrate the diverse set of studies, develop general theories of motor control, and explicate how the nervous system addresses the partially distinct behavioral demands of co-evolved effector system. The considerable flexibility and multiple interacting pathways of automatic postural responses also make it ideal for understanding how powerful formal theories, like optimal feedback control, are achieved by a distributed hierarchical neural network.
    Keywords: RC321-571 ; Q1-390 ; feedback ; supraspinal ; posture ; neural control ; reflex ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-05
    Description: Healthy ageing can lead to declines in both perceptual and cognitive functions. Impaired perception, such as that resulting from hearing loss or reduced visual or tactile resolution, increases demands on ‘higher-level’ cognitive functions to cope or compensate. It is possible, for example, to use focused attention to overcome perceptual limitations. Unfortunately, cognitive functions also decline in old age. This can mean that perceptual impairments are exacerbated by cognitive decline, and vice versa, but also means that interventions aimed at one type of decline can lead to improvements in the other. Just as improved cognition can ameliorate perceptual deficits, improving the stimulus can help offset cognitive deficits. For example, making directions and routes easy to follow can help compensate for declines in navigation abilities. In this Topic, we bring together papers from both auditory and visual researchers that address the interaction between perception and cognition in the ageing brain. Many of the studies demonstrate that a broadening of representations or increased reliance on gist underlie perceptual and cognitive age-related declines. There is also clear evidence that impaired perception is associated with poor cognition although, encouragingly, it can also be seen that good perception is associated with better cognition. Compensatory cognitive strategies were less successful in improving perception than might be expected. We also present papers which highlight important methodological considerations that are required when studying the older brain.
    Keywords: RC321-571 ; Q1-390 ; cross-modal ; auditory ; Ageing ; Compensation ; visual ; older ; Cognition ; training ; Elderly ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...