ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
  • 2
  • 3
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Marine Science 5 (2018): 49, doi:10.3389/fmars.2018.00049.
    Beschreibung: Species inhabiting deep-sea hydrothermal vents are strongly influenced by the geological setting, as it provides the chemical-rich fluids supporting the food web, creates the patchwork of seafloor habitat, and generates catastrophic disturbances that can eradicate entire communities. The patches of vent habitat host a network of communities (a metacommunity) connected by dispersal of planktonic larvae. The dynamics of the metacommunity are influenced not only by birth rates, death rates and interactions of populations at the local site, but also by regional influences on dispersal from different sites. The connections to other communities provide a mechanism for dynamics at a local site to affect features of the regional biota. In this paper, we explore the challenges and potential benefits of applying metacommunity theory to vent communities, with a particular focus on effects of disturbance. We synthesize field observations to inform models and identify data gaps that need to be addressed to answer key questions including: (1) what is the influence of the magnitude and rate of disturbance on ecological attributes, such as time to extinction or resilience in a metacommunity; (2) what interactions between local and regional processes control species diversity, and (3) which communities are “hot spots” of key ecological significance. We conclude by assessing our ability to evaluate resilience of vent metacommunities to human disturbance (e.g., deep-sea mining). Although the resilience of a few highly disturbed vent systems in the eastern Pacific has been quantified, these values cannot be generalized to remote locales in the western Pacific or mid Atlantic where disturbance rates are different and information on local controls is missing.
    Beschreibung: LM was supported by NSF OCE 1356738 and DEB 1558904. SB was supported by the NSF DEB 1558904 and the Investment in Science Fund at Woods Hole Oceanographic Institution. MB was supported by the Austrian Science Fund grants P20190-B17 and P16774-B03. LL was supported by NSF OCE 1634172 and the JM Kaplan Fund. MN was supported by NSF DEB 1558904. Y-JW was supported by a Korean Institute of Ocean Science and Technology (KIOST) grant PM60210.
    Schlagwort(e): Metacommunity ; Metapopulation ; Hydrothermal vent ; Connectivity ; Resilience ; Disturbance ; Species diversity ; Dispersal
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 60 (2015): 1332–1343, doi:10.1002/lno.10098.
    Beschreibung: Understanding the behavior of larval invertebrates during planktonic and settlement phases remains an open and intriguing problem in larval ecology. Larvae modify their vertical swimming behavior in response to water column cues to feed, avoid predators, and search for settlement sites. The larval eastern oyster (Crassostrea virginica) can descend in the water column via active downward swimming, sinking, or “diving,” which is a flick and retraction of the ciliated velum to propel a transient downward acceleration. Diving may play an important role in active settlement, as diving larvae move rapidly downward in the water column and may regulate their proximity to suitable settlement sites. Alternatively, it may function as a predator-avoidance escape mechanism. We examined potential hydrodynamic triggers to this behavior by observing larval oysters in a grid-stirred turbulence tank. Larval swimming was recorded for two turbulence intensities and flow properties around each larva were measured using particle image velocimetry. The statistics of flow properties likely to be sensed by larvae (fluid acceleration, deformation, vorticity, and angular acceleration) were compared between diving and non-diving larvae. Our analyses showed that diving larvae experienced high average flow accelerations in short time intervals (approximately 1–2 s) prior to dive onset, while accelerations experienced by non-diving larvae were significantly lower. Further, the probability that larvae dove increased with the fluid acceleration they experienced. These results indicate that oyster larvae actively respond to hydrodynamic signals in the local flow field, which has ecological implications for settlement and predator avoidance.
    Beschreibung: This work was supported by NSF grant OCE-0850419, NOAA Sea Grant NA14OAR4170074, grants from the WHOI Coastal Ocean Institute, discretionary WHOI funds, a WHOI Ocean Life Fellowship to LM, and a Grove City College Swezey Fellowship to EA.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: application/msword
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-27
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bongarts Lebbe, T., Rey-Valette, H., Chaumillon, E., Camus, G., Almar, R., Cazenave, A., Claudet, J., Rocle, N., Meur-Ferec, C., Viard, F., Mercier, D., Dupuy, C., Menard, F., Rossel, B. A., Mullineaux, L., Sicre, M.-A., Zivian, A., Gaill, F., & Euzen, A. Designing coastal adaptation strategies to tackle sea level rise. Frontiers in Marine Science, 8, (2021): 740602, https://doi.org/10.3389/fmars.2021.740602.
    Beschreibung: Faced with sea level rise and the intensification of extreme events, human populations living on the coasts are developing responses to address local situations. A synthesis of the literature on responses to coastal adaptation allows us to highlight different adaptation strategies. Here, we analyze these strategies according to the complexity of their implementation, both institutionally and technically. First, we distinguish two opposing paradigms – fighting against rising sea levels or adapting to new climatic conditions; and second, we observe the level of integrated management of the strategies. This typology allows a distinction between four archetypes with the most commonly associated governance modalities for each. We then underline the need for hybrid approaches and adaptation trajectories over time to take into account local socio-cultural, geographical, and climatic conditions as well as to integrate stakeholders in the design and implementation of responses. We show that dynamic and participatory policies can foster collective learning processes and enable the evolution of social values and behaviors. Finally, adaptation policies rely on knowledge and participatory engagement, multi-scalar governance, policy monitoring, and territorial solidarity. These conditions are especially relevant for densely populated areas that will be confronted with sea level rise, thus for coastal cities in particular.
    Beschreibung: This work was conducted as part of the project SEA’TIES led by the Ocean & Climate Platform. SEA’TIES is funded by the Prince Albert II Foundation (No. 3112), Veolia Foundation (No. 20EB2004), and Fondation de France, Monaco. It was coordinated by the CNRS, in the framework of the RTPi (International Multidisciplinary Thematic Network) which drives the scientific component of the SEA’TIES project.
    Schlagwort(e): climate change ; sea level rise ; adaptation ; governance ; nature-based solutions ; multidisciplinary approach ; vulnerability ; coastal cities
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gollner, S., Govenar, B., Arbizu, P. M., Mullineaux, L. S., Mills, S., Le Bris, N., Weinbauer, M., Shank, T. M., & Bright, M. Animal community dynamics at senescent and active vents at the 9° N East Pacific Rise after a volcanic eruption. Frontiers in Marine Science, 6, (2020): 832, doi:10.3389/fmars.2019.00832.
    Beschreibung: In 2005/2006, a major volcanic eruption buried faunal communities over a large area of the 9°N East Pacific Rise (EPR) vent field. In late 2006, we initiated colonization studies at several types of post eruption vent communities including those that either survived the eruption, re-established after the eruption, or arisen at new sites. Some of these vents were active whereas others appeared senescent. Although the spatial scale of non-paved (surviving) vent communities was small (several m2 compared to several km2 of total paved area), the remnant individuals at surviving active and senescent vent sites may be important for recolonization. A total of 46 meio- and macrofauna species were encountered at non-paved areas with 33 of those species detected were also present at new sites in 2006. The animals living at non-paved areas represent refuge populations that could act as source populations for new vent sites directly after disturbance. Remnants may be especially important for the meiofauna, where many taxa have limited or no larval dispersal. Meiofauna may reach new vent sites predominantly via migration from local refuge areas, where a reproductive and abundant meiofauna is thriving. These findings are important to consider in any potential future deep-sea mining scenario at deep-sea hydrothermal vents. Within our 4-year study period, we regularly observed vent habitats with tubeworm assemblages that became senescent and died, as vent fluid emissions locally stopped at patches within active vent sites. Senescent vents harbored a species rich mix of typical vent species as well as rare yet undescribed species. The senescent vents contributed significantly to diversity at the 9°N EPR with 55 macrofaunal species (11 singletons) and 74 meiofaunal species (19 singletons). Of these 129 species associated with senescent vents, 60 have not been reported from active vents. Tubeworms and other vent megafauna not only act as foundation species when alive but provide habitat also when dead, sustaining abundant and diverse small sized fauna.
    Beschreibung: We received funding from the Austrian FWF (GrantP20190-B17; MB), the U.S. National Science Foundation (OCE-0424953; to LM, D. McGillicuddy, A. Thurnherr, J. Ledwell, and W. Lavelle; and OCE-1356738 to LM), and the European Union Seventh Framework Programme (FP7/2007-2013) under the MIDAS project, Grant Agreement No. 603418. Ifremer and CNRS (France) supported NL cruise participation and sensor developments. BG was supported by a postdoctoral fellowship from the Deep Ocean Exploration Institute at WHOI (United States). TS was supported by the U.S. National Science Foundation (OCE-0327261 to TS and OCE-0937395 to TS and BG).
    Schlagwort(e): senescent vent ; biodiversity ; volcanic eruption ; recovery ; meiofauna ; macrofaunal ; deep-sea mining
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...