ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2008. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 360 (2008): 163-178, doi:10.3354/meps07387.
    Description: Euphausiids are commonly found in the stomachs of bowhead whales Balaena mysticetus hunted near Barrow, Alaska; however, no evidence exists of a self-sustaining population in this region. To explain euphausiid presence near Barrow, their transport from the northern Bering Sea was investigated through particle tracking experiments using velocity fields from an ocean general circulation model in 4 contrasted circulation scenarios (1997, 1998, 2002 and 2003). Euphausiids were released during their spawning season (April-June) in the bottom and surface layers in the northern Bering Sea, their endemic region, and tracked through the Chukchi-Beaufort Sea. Results show that both Anadyr Gulf and Shpanberg Strait are potential regions of origin for euphausiids. Topographically steered bottom particles have 4 to 5 times higher probability of reaching Barrow than surface particles (ca. 95% versus 20% of particles). As euphausiids are often found near the bottom on the northern Bering shelf, this suggests a very high probability of euphausiids reaching Barrow, making this location a privileged area for whale feeding. The main pathways to Barrow across the Chukchi Sea shelf are Central Valley (CV) and Herald Valley (HV). The transit to Barrow takes 4 to 20 mo. Arrivals at Barrow have 2 peaks at ca. 200 d (fall, CV particles) and 395 d after release (spring, mixed CV and HV) on average, because of the seasonal cycle of the Chukchi Sea currents. Elevated euphausiid abundance in the fall at Barrow is favored by a high Bering Strait northward transport and by southerly winds, driving organisms through CV rather than through the HV pathway.
    Description: This work was supported by NSF grant # OPP-0435956.
    Description: 2013-05-22
    Keywords: Euphausiid ; Thysanoessa spp. ; Bowhead whale ; Balaena mysticetus ; Western Arctic Ocean ; Chukchi Sea ; Lagrangian drifter ; Zooplankton advection model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-02
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Koguchi, Y., Tokuhiro, K., Ashjian, C., Campbell, R., & Yamaguchi, A. Inter-species comparison of the copepodite stage morphology, vertical distribution, and seasonal population structure of five sympatric mesopelagic aetideid copepods in the western Arctic Ocean. Frontiers in Marine Science, 9, (2022): 943100, https://doi.org/10.3389/fmars.2022.943100.
    Description: Aetideidae is a calanoid copepod family dominant in the mesopelagic layer of the Arctic Ocean for which little ecological information is available because species identification, especially of early copepodite stages, is difficult. In this study, we developed a species identification flow for the whole copepodite stages of five sympatric aetideid copepods (Chiridius obtusifrons, Gaetanus tenuispinus, G. brevispinus, Aetideopsis multiserrata, and A. rostrata). Vertical distributions and seasonal population structures of these species were evaluated using a year-round sample time-series collected at the drifting ice station (SHEBA) in the western Arctic Ocean. Combinations of morphological characteristics (prosome length, cephalosome, and prosome widths) were used to identify the early copepodite stages to species. Aetideopsis rostrata was distributed in deep waters (1,032–1,065 m) throughout the year. The other species all were found at 600–700 m during the midnight sun. However, during the polar night, the vertical distributions of each species were distinct, resulting from ascent, descent, or depth maintenance, indicating seasonal vertical migration which may function to reduce inter-specific competition during the polar night when food resources are scarce. Reproduction timing varied among four aetideid copepods: C.obtusifrons and G. tenuispinus showed polar night ascent and reproduction at the end of the polar night, whereas G. brevispinus and A. multiserrata showed descent or depth maintenance during the polar night and reproduction at the beginning of the polar night. There was not sufficient data to examine reproduction timing of A. rostrata. Common for all aetideid species, δ15N values of the adult females indicate more carnivorous feeding modes during the polar night than those in the midnight sun. Such vertical distribution and timing of reproduction variation among these five aetideid copepods may function to reduce species competition in the mesopelagic layer of the Arctic Ocean.
    Description: Collection of the samples was supported in part by grants #OCE9707184 to CA and #OCE9707182 to RC from the US National Science Foundation. This work was partially supported by the Arctic Challenge for Sustainability II (ArCS II), Program Grant Number JPMXD1420318865. This research was also supported by the Environment Research and Technology Development Fund (JPMEERF20214002) of the Environmental Restoration and Conservation Agency of Japan. In addition, this work was partly supported by a Grant-in-Aid for Challenging Research (Pioneering) JP20K20573, and Scientific Research JP20H03054 (B), JP19H03037 (B), JP21H02263 (B), and JP17H01483 (A) from the Japanese Society for the Promotion of Science (JSPS).
    Keywords: Aetideidae ; Sympatric mesopelagic copepods ; Vertical distribution ; Population structure ; Reproduction ; The Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...