ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-02-25
    Print ISSN: 0022-3727
    Electronic ISSN: 1361-6463
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-21
    Print ISSN: 0953-8984
    Electronic ISSN: 1361-648X
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-22
    Description: Finite-fault models for the 2010 Mw 8.8 Maule, Chile earthquake indicate bilateral rupture with large-slip patches located north and south of the epicenter. Previous studies also show that this event features significant slip in the shallow part of the megathrust, which is revealed through correction of the forward tsunami modeling scheme used in tsunami inversions. The presence of shallow slip is consistent with the coseismic seafloor deformation measured off the Maule region adjacent to the trench and confirms that tsunami observations are particularly important for constraining far-offshore slip. Here, we benchmark the method of Optimal Time Alignment (OTA) of the tsunami waveforms in the joint inversion of tsunami (DART and tide-gauges) and geodetic (GPS, InSAR, land-leveling) observations for this event. We test the application of OTA to the tsunami Green’s functions used in a previous inversion. Through a suite of synthetic tests we show that if the bias in the forward model is comprised only of delays in the tsunami signals, the OTA can correct them precisely, independently of the sensors (DART or coastal tide-gauges) and, to the first-order, of the bathymetric model used. The same suite of experiments is repeated for the real case of the 2010 Maule earthquake where, despite the results of the synthetic tests, DARTs are shown to outperform tide-gauges. This gives an indication of the relative weights to be assigned when jointly inverting the two types of data. Moreover, we show that using OTA is preferable to subjectively correcting possible time mismatch of the tsunami waveforms. The results for the source model of the Maule earthquake show that using just the first-order modeling correction introduced by OTA confirms the bilateral rupture pattern around the epicenter, and, most importantly, shifts the inferred northern patch of slip to a shallower position consistent with the slip models obtained by applying more complex physics-based corrections to the tsunami waveforms. This is confirmed by a slip model refined by inverting geodetic and tsunami data complemented with a denser distribution of GPS data nearby the source area. The models obtained with the OTA method are finally benchmarked against the observed seafloor deformation off the Maule region. We find that all of the models using the OTA well predict this offshore coseismic deformation, thus overall, this benchmarking of the OTA method can be considered successful.
    Electronic ISSN: 2296-6463
    Topics: Geosciences
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The Mw = 9.1 mega-thrust Sumatra–Andaman earthquake that occurred on December 26, 2004, was followed by a devastating tsunami that killed hundreds of thousands of people and caused catastrophic effects on human settlements and environments along many coasts of the Indian Ocean, where even countries very far from the source were affected. One of these cases is represented by the Republic of Seychelles, where the tsunami reached the region about 7 h after the earthquake and produced relevant damages, despite the country was more than 4,500 km far from the seismic source. In the present work, we present and discuss a study of the 2004 Sumatra tsunami by means of numerical simulations with the attention focused on the effects observed at the Seychelles Archipelago, a region never previously investigated with this approach. The case is interesting since these islands lay on a very shallow oceanic platform with steep slopes so as the ocean depth changes from thousands to few tens of meters over short distances, with significant effects on the tsunami propagation features: the waves are strongly refracted by the oceanic platform and the tsunami signal is modified by the introduction of additional frequencies. The study is used also to validate the UBO-TSUFD numerical code on a real tsunami event in the far field, and the results are compared with the available observations, i.e., the sea level time series recorded at the Pointe La Rue station, Mahe ́ Island, and run-up measurements and inundation lines surveyed few weeks after the tsunami at Praslin Island, where the tsunami hit during low tide. Synthetic results are found in good agreement with observations, even though some of the observations remain not fully solved. Moreover, simulations have been run in high-tide condition since the 2004 Sumatra tsunami hitting at high tide can be taken as the worst-case scenario for the Seychelles islands and used for tsunami hazard and risk assessments
    Description: Published
    Description: 1507–1525
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Tsunami; Numerical modeling; Indian Ocean; Tsunami scenarios ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...