ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers  (3)
  • Royal Society of New Zealand  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 2021-02-08
    Description: Submarine currents are a principal factor in controlling seafloor geomorphology. Herein, we investigate the role of dynamic current systems associated with the Subtropical Front in the formation and modification of seafloor depressions off the east coast of New Zealand’s South Island. Seafloor depressions are widespread in this region, with a diverse range of morphologies and sizes. We focus on two ‘end-member’ classes of depressions; densely spaced decametre-scale structures and more isolated ‘giant’ depressions of up to 12 km in diameter. Our results reveal a direct correlation between the dominant current flow direction, and the modification and alignment of depressions. We present a model to illustrate the role of submarine currents in shaping the morphology of these enigmatic seafloor depressions. This model demonstrates how contour currents, and potentially eddy currents, have extensively modified seafloor structures, resulting in elongate, asymmetrical depressions, partially infilled by sediment drift deposits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Frontiers
    In:  Frontiers for Young Minds, 7 (96).
    Publication Date: 2019-07-22
    Description: All around the world, beneath the seafloor, there are huge volumes of natural gas. But these are not the normal gas reservoirs that we collect to use for cooking, heating our homes, and making electricity in power stations. This gas is locked up in what we call gas hydrates. Gas hydrates are a solid form of water, rather like ice, that contains gas molecules locked up in a “cage” of water molecules. Gas hydrates are found on continental shelves around the world and in permafrost in the arctic. We are interested in gas hydrates because they could be used as a future source of natural gas. They are also important because they can cause large landslides on the seafloor, damaging offshore pipelines and cables and contributing to the formation of tsunami waves.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Frontiers
    In:  Frontiers for Young Minds, 7 (Article 25).
    Publication Date: 2020-01-02
    Description: Did you know that we have better maps of the moon, Mars, and Venus than we do of the seafloor on Earth? Since oceans cover 71% of the Earth’s surface, understanding what the seafloor looks like, and where different processes, such as ocean currents are active, is hugely important. Mapping the seafloor helps us to work out things like where different types of fish live, where we might find resources, such as rare metals and fossil fuels, and whether there is a risk of underwater landslides happening that might cause a tsunami. Mapping the seafloor is very challenging, because we cannot use the same techniques that we would use on land. To map the deep ocean, we use a tool called a multibeam echo-sounder, which is attached to a ship or a submarine vessel.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The highest concentration of cold seep sites worldwide has been observed along convergent margins, where fluid migration through sedimentary sequences is enhanced by tectonic deformation and dewatering of marine sediments. In these regions, gas seeps support thriving chemosynthetic ecosystems increasing productivity and biodiversity along the margin. In this paper, we combine seismic reflection, multibeam and split-beam hydroacoustic data to identify, map and characterize five known sites of active gas seepage. The study area, on the southern Hikurangi Margin off the North Island of Aotearoa/New Zealand, is a well-established gas hydrate province and has widespread evidence for methane seepage. The combination of seismic and hydroacoustic data enable us to investigate the geological structures underlying the seep sites, the origin of the gas in the subsurface and the associated distribution of gas flares emanating from the seabed. Using multi-frequency split-beam echosounder (EK60) data we constrain the volume of gas released at the targeted seep sites that lie between 1,110 and 2,060 m deep. We estimate the total deep-water seeps in the study area emission between 8.66 and 27.21 × 10 6 kg of methane gas per year. Moreover, we extrpolate methane fluxes for the whole Hikurangi Margin based on an existing gas seep database, that range between 2.77 × 10 8 and 9.32 × 10 8 kg of methane released each year. These estimates can result in a potential decrease of regional pH of 0.015–0.166 relative to the background value of 7.962. This study provides the most quantitative assessment to date of total methane release on the Hikurangi Margin. The results have implications for understanding what drives variation in seafloor biological communities and ocean biogeochemistry in subduction margin cold seep sites.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...