ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: The thermofluid dynamics of pyroclastic flows down the slopes of Vesuvius (Italy) were investigated using physical modeling of the magma ascent and pyroclastic dispersal processes. The expected properties and conditions of the magma, such as its anhydrous composition, water content, and temperature, were based on the present knowledge of the magmatic system and were used as input data for the magma ascent model. The predicted vent conditions were used to define the boundary conditions for the simulation of pyroclastic flow dispersal along selected two-dimensional axisymmetric profiles, representative of the southern and northern slopes of Vesuvius. The model employed describes the temporal evolution of a three-phase mixture composed of a continuous gas phase and two solid phases representative of fine and coarse particles. The specific terrain roughness of the slopes of Vesuvius, caused by the presence of pine woods and urban settlements, was also estimated and accounted for by the model. Several simulations were carried out by assuming different magmatic compositions (in terms of water content and temperature), eruption intensities, topographic profiles, and flow duration. Pyroclastic flow dynamics appear to be strongly influenced by the fountain and atmospheric dynamics showing complex, unsteady, and, in some cases, non-intuitive behaviors. The mass flow-rate per unit angle of propagation of the flow proves to be the most critical parameter controlling the run-out and, therefore, the hazard on the slopes of Vesuvius. The two-dimensional topographic profiles employed also appear to significantly affect the flow propagation. Simulation outputs allow the quantification of the spatial and temporal evolution of several flow variables that are critical in hazard mitigation studies. The analysis of these variables is extensively described in a companion paper (Esposti Ongaro et al. 2002, this volume).
    Description: Published
    Description: 155-177
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Hazard · Mitigation · Numerical simulation · Pyroclastic flows · Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier Science Limited
    Publication Date: 2017-04-04
    Description: Etna poses risks to inhabited areas with its frequent effusive eruptions. During the 1989 and 1991 eruptions the Italian Department of Civil Protection diverted the lava from its natural path into an artificial channel, reducing the risk of lava inundation. The intervention resulted in the creation of a bifurcation between the natural and the artificial channels. In this paper magma dynamics in the bifurcation is investigated by solving the equations of mass and momentum balance with a simplified two-dimensional geometry, describing magma as an homogeneous, isothermal incompressible fluid with Newtonian rheology. Results show the important role played by the slope of the artificial channel and the effect of the width of the artificial mouth on the efficiency of the diversion.
    Description: Published
    Description: 953-956
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: lava flow ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: El Chichón volcano, Chiapas, Mexico, erupted explosively on March 29th, 1982, after a repose period of about 550 years. Amongst ten eruptive episodes documented between March 29th and April 4th, only the three that occurred on March 29th and April 4th produced significant pyroclastic tephra deposits. Here we use analytical (HAZMAP) and numerical (FALL3D) tephra transport models to reconstruct the deposits and the atmospheric plume dispersal associated with the three main fallout units of the 1982 eruption. On the basis of such a reconstruction, we produce hazard maps of tephra fallout associated to a Plinian eruption and discuss the implications of such a severe eruption scenario.
    Description: Published
    Description: 39–49
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: Fallout deposit ; 1982 El Chichón eruption ; HAZMAP ; FALL3D ; Hazard assessment ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Naples is a large city located between two active volcanic areas: Campi Flegrei to theWand Vesuvius to the SE. The Solfatara crater, inside the caldera of the Campi Flegrei and nearest to the western quarters of the city, is a prodigious source of natural CO2 with a mean emission rate of 1067 ton/d, i.e. seven times higher than that of Vesuvius(151 ton/d). This study shows that the area around the Solfatara and part of the urban area of Naples are affected by the volcanic plume when atmospheric circulatory patterns are dominated by the locally frequent sea breezes. Under these conditions the CO2 content in the air increases above normal values, reaching more than 1000 ppm in proximity to the Solfatara crater to a few tens of ppm several kilometres from the source. Although these values do not indicate a health risk even under the most unfavourable atmospheric conditions, the volcanic source contributes to the total CO2 burden from all urban emissions and hence to overall air quality. An emission rate ten times higher than the present one would lead to an air CO2 concentration in excess of recommended health protection thresholds.
    Description: Published
    Description: 52-61
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: CO2 dispersion; Solfatara; Gas hazard; Campi Flegrei ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-12-16
    Description: Volcanic ash produced during explosive eruptions can have very severe impacts on modern technological societies. Here, we use reconstructed patterns of fine ash dispersal recorded in terrestrial and marine geological archives to assess volcanic ash hazards. The ash-dispersal maps from nine Holocene explosive eruptions of Italian volcanoes have been used to construct frequency maps of distal ash deposition over a wide area, which encompasses central and southern Italy, the Adriatic and Tyrrhenian seas and the Balkans. The maps are presented as two cumulative-thickness isopach maps, one for nine eruptions from different volcanoes and one for six eruptions from Somma-Vesuvius. These maps represent the first use of distal ash layers to construct volcanic hazard maps, and the proposed methodology is easily applicable to other volcanic areas worldwide.
    Description: This research was partially funded by INGV-DPC of Italy (SPEED project), IUGG grants to RS and PRIN09 project (coordinator RS).
    Description: Published
    Description: 866
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic ash ; Tephrostratigraphy ; Volcanic hazard ; Central Mediterranean ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-25
    Description: The MU-RAY detector has been designed to perform muon radiography of volcanoes. The possible use on the field introduces several constraints. First the electric power consumption must be reduced to the minimum, so that the detector can be solar-powered. Moreover it must be robust and transportable, for what concerns the front-end electronics and data acquisition. A 1m2 prototype has been constructed and is taking data at Mt.Vesuvius. The detector consists of modules of 32 scintillator bars with wavelength shifting fibers and silicon photomultiplier read-out. A dedicated front-end electronics has been developed, based on the SPIROC ASIC. An introduction to muon radiography principles, the MU-RAY detector description and results obtained in laboratory will be presented.
    Description: We acknowledge the support provided by the Istituto Nazionale di Fisica Nucleare(INFN). We wish to thank A.Brosfor the scintillator bars provided by FERMILAB-NICADD. We are grateful to Aldo Orlandi of the Laboratori Nazionali di Frascati of INFN for polishing and mirroring the fibers.
    Description: Published
    Description: 423-426
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Muon radiography ; Muon detector ; SiPM ; Volcanoes ; Muography ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-16
    Description: Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance.
    Description: Published
    Description: 84
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: explosive eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...