ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-08-29
    Description: We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under twowarming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of −14 to −19 PgC°C−1 on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier BV
    In:  EPIC3Quaternary Science Reviews, Elsevier BV, 307, pp. 108055-108055, ISSN: 0277-3791
    Publication Date: 2023-04-03
    Description: Vegetation shifts in circum-Arctic permafrost peatlands drive feedbacks with important consequences for peatland carbon budgets and the extent of permafrost thaw under changing climate. Recent shrub expansion across Arctic tundra environments has led to an increase in above-ground biomass, but the long-term spatiotemporal dynamics of shrub and tree growth in circum-Arctic peatlands remain unquantified. We investigate changes in peatland vegetation composition during the Holocene using previously-published plant macrofossil records from 76 sites across the circum-Arctic permafrost zone. In particular, we assess evidence for peatland shrubification at the continental scale. We identify increasing abundance of woody vegetation in circum-Arctic peatlands from ~8000 years BP to present, coinciding with declining herbaceous vegetation and widespread Sphagnum expansion. Ecosystem shifts varied between regions and present-day permafrost zones, with late-Holocene shrubification most pronounced where permafrost coverage is presently discontinuous and sporadic. After ~600 years BP, we find a proliferation of non-Sphagnum mosses in Fennoscandia and across the present-day continuous permafrost zone; and rapid expansion of Sphagnum in regions of discontinuous and isolated permafrost as expected following widespread fen-bog succession, which coincided with declining woody vegetation in eastern and western Canada. Since ~200 years BP, both shrub expansion and decline were identified at different sites across the pan-Arctic, highlighting the complex ecological responses of circum-Arctic peatlands to post-industrial climate warming and permafrost degradation. Our results suggest that shrubification of circum-Arctic peatlands has primarily occurred alongside surface drying, resulting from Holocene climate shifts, autogenic peat accumulation, and permafrost aggradation. Future shrubification of circum-Arctic peatlands under 21st century climate change will likely be spatially heterogeneous, and be most prevalent where dry microforms persist.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...