ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: Highlights: • Gelatinous zooplankton (GZ) is common in Eastern Tropical North Atlantic (ETNA). • Weak negative correlation between oxygen and key GZ groups with higher densities at lower oxygen conditions. • High GZ biomass also found at lowest oxygen concentration depths. • Strong positive correlation between temperature and key GZ group abundance. • GZ important component of oceanic ecosystems including low oxygenated waters. Physical and topographic characteristics can structure pelagic habitats and affect the plankton community composition. For example, oxygen minimum zones (OMZs) are expected to lead to a habitat compression for species with a high oxygen demand, while upwelling of nutrient-rich deep water at seamounts can locally increase productivity, especially in oligotrophic oceanic waters. Here we investigate the response of the gelatinous zooplankton (GZ) assemblage and biomass to differing oxygen conditions and to a seamount in the Eastern Tropical North Atlantic (ETNA) around the Cape Verde archipelago. A total of 16 GZ taxa (〉1100 specimens) were found in the upper 1000 m with distinct species-specific differences, such as the absence of deep-living species Atolla wyvillei and Periphylla periphylla above the shallow seamount summit. Statistical analyses considering the most prominent groups, present at all stations, namely Beroe spp., hydromedusae (including Zygocanna vagans, Halicreas minimum, Colobonema sericeum, Solmissus spp.) and total GZ, showed a strong positive correlation of abundance with temperature for all groups, whereas oxygen had a weak negative correlation only with abundances of Beroe spp. and hydromedusae. To account for size differences between species, we established length-weight regressions and investigated total GZ biomass changes in relation to physical (OMZ) and topographic characteristics. The highest GZ biomass was observed at depths of lowest oxygen concentrations and deepest depth strata at the southeastern flank of the seamount and at two stations south of the Cape Verde archipelago. Our data suggest that, irrespective of their patchy distribution, GZ organisms are ubiquitous food web members of the ETNA, and their habitat includes waters of low oxygen content.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...