ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-01
    Print ISSN: 0025-326X
    Electronic ISSN: 1879-3363
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-12
    Description: © The Authors, 2019. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 4.0 International License. The definitive version was published in Marine Pollution Bulletin, 140, (2019):364-373, doi:10.1016/j.marpolbul.2018.12.047.
    Description: Estuaries provide significant cultural ecosystem services, including recreation and tourism. Disruptions of estuarine biogeochemical processes resulting from environmental degradation could interrupt the flow of these services, reducing benefits and diminishing the welfare of local communities. This study focused on recreational shellfishing in Buzzards Bay, Massachusetts (41.55°N, 70.80°W). Relationships among measures of recreational shellfishing, estuarine water quality, and local socioeconomic conditions were tested to understand how the benefits of cultural ecosystem services to local communities might be affected by declining water quality. Transferring estimated economic benefits from an analysis of nearby municipalities, the study finds that increases in Chl a during the 24-year period were associated with losses in recreational shellfishing benefits of $0.08–0.67 million per decade. The approach presented here suggests a more broadly applicable framework for assessing the impacts of changes in coastal ecosystem water quality on the welfare of local communities.
    Description: We would like to thank the Buzzards Bay Coalition, the Buzzards Bay National Estuary Program, and the Massachusetts Department of Marine Fisheries for providing data for this analysis. We thank the 1074 citizen volunteers of the Buzzards Bay Coalition who collected the water quality samples and Mark Rasmussen for his leadership in sustaining the Baywatchers Program. Support for this analysis was provided by the John D. and Catherine T. MacArthur Foundation (Grant no. 14-106159-000-CFP), MIT Sea Grant (subaward number 5710004045), the Johnson Endowment of the WHOI Marine Policy Center, and SCD acknowledges support from the University of Virginia.
    Keywords: Estuarine water quality ; Eutrophication ; Recreational shellfishing ; Cultural ecosystem services ; Economic benefits transfer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Luis, K. M. A., Rheuban, J. E., Kavanaugh, M. T., Glover, D. M., Wei, J., Lee, Z., & Doney, S. C. Capturing coastal water clarity variability with Landsat 8. Marine Pollution Bulletin, 145, (2019): 96-104, doi: 10.1016/j.marpolbul.2019.04.078.
    Description: Coastal water clarity varies at high temporal and spatial scales due to weather, climate, and human activity along coastlines. Systematic observations are crucial to assessing the impact of water clarity change on aquatic habitats. In this study, Secchi disk depths (ZSD) from Boston Harbor, Buzzards Bay, Cape Cod Bay, and Narragansett Bay water quality monitoring organizations were compiled to validate ZSD derived from Landsat 8 (L8) imagery, and to generate high spatial resolution ZSD maps. From 58 L8 images, acceptable agreement was found between in situ and L8 ZSD in Buzzards Bay (N = 42, RMSE = 0.96 m, MAPD = 28%), Cape Cod Bay (N = 11, RMSE = 0.62 m, MAPD = 10%), and Narragansett Bay (N = 8, RMSE = 0.59 m, MAPD = 26%). This work demonstrates the value of merging in situ ZSD with high spatial resolution remote sensing estimates for improved coastal water quality monitoring.
    Description: This work was supported by the John D. and Catherine T. MacArthur Foundation (grant 14-106159-000-CFP) and by the National Science Foundation grant DGE 1249946, Integrative Graduate Education and Research Traineeship (IGERT): Coasts and Communities – Natural and Human Systems in Urbanizing Environments. Lastly, we are indebted to the Massachusetts Water Resources Authority, Buzzards Bay Coalition, Provincetown Center for Coastal Studies, Narragansett Bay Commission, and the numerous citizen scientists responsible for collecting the in situ measurements used in this study. Comments and suggestions from our anonymous reviewer were greatly appreciated.
    Keywords: Water quality ; Secchi disk depth ; Remote sensing ; Landsat
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...