ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kakihata, Y., Michibayashi, K., & Dick, H. Heterogeneity in texture and crystal fabric of intensely hydrated ultramylonitic peridotites along a transform fault, Southwest Indian Ridge. Tectonophysics, 823, (2022): 229206, https://doi.org/10.1016/j.tecto.2021.229206.
    Description: Microstructures and olivine crystal fabrics were studied in amphibole-bearing peridotite samples obtained from the Marion Fracture Zone of the Southwest Indian Ridge by dredge D19 of the 1984 PROTEA Expedition Leg 5 cruise of the RV Melville. The peridotites show various textures ranging from extremely fine-grained well-layered ultramylonites to heterogeneously strained tectonites. Electron back-scatter diffraction analyses revealed that olivine crystal-preferred orientations (CPOs), which are developed primarily in coarse granular peridotites in the mantle, become weaker with an increasing degree of grain-size reduction from coarser to finer grains, for both porphyroclastic and matrix olivine grains. However, two well-layered ultramylonites are characterized by bimodal CPOs of (010)[001] (B type) and (001)[100] (E type) or a strong maximum of [010] normal to the foliation and girdle patterns of both [100] and [001] on the foliation plane (i.e., an axial [010] pattern or AG type). Moreover, spinel grains within these well-layered ultramylonites have not only been broken down to form olivine and amphibole by hydrous reactions, but have also been fractured and their fragments pulled apart in the fine-grained matrix. These features indicate that shear deformation occurred as increasing stress under hydrous conditions during the final stage of deformation, which enabled the local occurrence of low-temperature plastic deformation, resulting in the development of a CPO and a foliation within the ultramylonites.
    Description: This study was supported by research grants awarded to K.M. by the Japan Society for the Promotion of Science (Kiban-A 22244062, Kiban-S 16H06347). H.J.B.D. was supported by the US National Science Foundation (NSF/MG&G) and Woods Hole Oceanographic Institution.
    Keywords: Transform fault ; Mantle ; Peridotite ; Ultramylonite ; Hydrous mineral ; Olivine CPOs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pieterek, B., Ciazela, J., Boulanger, M., Lazarov, M., Wegorzewski, A., Pańczyk, M., Strauss, H., Dick, H. J. B., Muszyński, A., Koepke, J., Kuhn, T., Czupyt, Z., & France, L. Sulfide enrichment along igneous layer boundaries in the lower oceanic crust: IODP Hole U1473A, Atlantis Bank, Southwest Indian Ridge. Geochimica et Cosmochimica Acta, 320, (2022): 179–206, https://doi.org/10.1016/j.gca.2022.01.004.
    Description: Reactive porous or focused melt flows are common in crystal mushes of mid-ocean ridge magma reservoirs. Although they exert significant control on mid-ocean ridge magmatic differentiation, their role in metal transport between the mantle and the ocean floor remains poorly constrained. Here we aim to improve such knowledge for oceanic crust formed at slow-spreading centers (approximately half of present-day oceanic crust), by focusing on specific igneous features where sulfides are concentrated. International Ocean Discovery Program (IODP) Expedition 360 drilled Hole U1473A 789 m into the lower crust of the Atlantis Bank oceanic core complex, located at the Southwest Indian Ridge. Coarse-grained (5–30 mm) olivine gabbro prevailed throughout the hole, ranging locally from fine- (〈1 mm), to very coarse-grained (〉30 mm). We studied three distinct intervals of igneous grain size layering at 109.5–110.8, 158.0–158.3, and 593.0–594.4 meters below seafloor to understand the distribution of sulfides. We found that the layer boundaries between the fine- and coarse-grained gabbro were enriched in sulfides and chalcophile elements. On average, sulfide grains throughout the layering were composed of pyrrhotite (81 vol.%; Fe1-xS), chalcopyrite (16 vol.%; CuFeS2), and pentlandite (3 vol.%; [Ni,Fe,Co]9S8), which reflect paragenesis of magmatic origin. The sulfides were most commonly associated with Fe-Ti oxides (titanomagnetites and ilmenites), amphiboles, and apatites located at the interstitial positions between clinopyroxene, plagioclase, and olivine. Pentlandite exsolution textures in pyrrhotite indicate that the sulfides formed from high-temperature sulfide liquid separated from mafic magma that exsolved upon cooling. The relatively homogenous phase proportion within sulfides along with their chemical and isotopic compositions throughout the studied intervals further support the magmatic origin of sulfide enrichment at the layer boundaries. The studied magmatic layers were likely formed as a result of intrusion of more primitive magma (fine-grained gabbro) into the former crystal mush (coarse-grained gabbro). Sulfides from the coarse-grained gabbros are Ir-Platinum Group Element-rich (PGE; i.e., Ir, Os, Ru) but those from the fine-grained gabbros are Pd-PGE-rich (i.e., Pd, Pt, Rh). Notably, the sulfides from the layer boundaries are also enriched in Pd-PGEs, and therefore elevated sulfide contents at the boundaries were likely related to the new intruding melt. Because S concentration at sulfide saturation level is dependent on the Fe content of the melt, sulfide crystallization may have been caused by FeO loss, both via crystallization of late-precipitating oxides at the boundaries, and by exchange of Fe and Mg between melt and Fe-bearing silicates (olivine and clinopyroxene). The increased precipitation of sulfide grains at the layer boundaries might be widespread in the lower oceanic crust, as also observed in the Semail ophiolite and along the Mid-Atlantic Ridge. Therefore, this process might affect the metal budget of the global lower oceanic crust. We estimate that up to ∼20% of the Cu, ∼8% of the S, and ∼84% of the Pb of the oceanic crust inventory is accumulated at the layer boundaries only from the interaction between crystal mush and new magma.
    Description: This research was funded by National Science Centre Poland (PRELUDIUM 12 no. 2016/23/N/ST10/00288), Graduate Academy of the Leibniz Universität Hannover (60421784), and ECORD Research Grant to J. Ciazela, as well as Deutsche Forschungsgemeinschaft (KO1723/23-1) to J. Koepke and H. Strauss. J. Ciazela is additionally supported within the START program of the Foundation for Polish Science (FNP). This is CRPG contribution No. 2813.
    Keywords: Sulfides ; Chalcophile elements ; Platinum group elements ; Lower oceanic crust ; IODP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...