ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology  (3)
  • Long Period analysis
  • Elsevier  (3)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2020-11-12
    Description: Fogo volcano is an active central volcano, with a lake filled caldera, in the central part of São Miguel Island, Azores, whose current activity is limited to hydrothermal manifestations such as active fumarolic fields, thermal and CO2 cold springs and soil diffuse degassing areas. It is affected by important active tectonic structures, with high seismic activity and practically continuous micro-seismicity. A recurrent feature from the seismicity observed in volcanic regions is the occurrence of clusters of similar earthquakes, whose origin can be attributed to the repeated action of a similar source mechanism at the same focal area. Doublets/multiplets were identified in this study within a catalogue of small magnitude (usually 〈 3) volcano tectonic events recorded in 2003–2004 by a selection of stations around Fogo volcano. All events have been cross-correlated and pairs whose waveforms exhibited a cross-correlation coefficient equal to or higher than 0.9 were analysed using the coda-wave interferometry technique. Subtle velocity variations found between events highlight a seasonal cycle of the velocity patterns, with lower velocity in winter time and higher velocity during summer months. Those results, together with quantitative differences between the same doublets at different stations, exhibit an excellent correlation with rainfall. A seasonal effect can also be broadly seen in the seismicity occurrence, and some of the swarms recorded over the two year period occur during the wettest season or close to episodes of abundant (above average) rainfall. Moreover, temporal and spatial analysis of several swarms highlighted the lack of any mainshock–aftershock sequence and organized migration of the hypocenters. This is suggestive of a very heterogeneous stress field. Vp/Vs is found to be lower than usually observed in volcanic areas, an occurrence likely related to the presence of steamy fluid associated with the geothermal system. Taken together, these observations suggest that pore pressurisation plays a major role in controlling a considerable part of the recorded seismicity. The geothermal fluids around Fogo massif have been identified as derived from meteoric water, which infiltrates through Fogo Lake and the volcano flanks and flows from south to north on the northern flank. All those elements seem to point to a role played by rainfall in triggering seismicity at São Miguel, possibly through pressure changes at depth in response to surface rain and/or an interaction with the geothermal system.
    Description: Published
    Description: 231-246
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: velocity changes ; rainfall ; volcano seismicity ; triggered seismicity ; Azores archipelago ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Following the installation of a broadband network on Mt. Etna, sustained Long-Period (LP) activity was recorded accompanying a period of total quiescence and the subsequent onset of the 2004–2005 effusive episode. From about 56000 events detected by an automatic classification procedure, we analyse a subset of about 3000 signals spanning the December 17th, 2003–September 25th, 2004, time interval. LP spectra are characterised by several, unevenly-spaced narrow peaks spanning the 0.5–10 Hz frequency band. These peaks are common to all the recording sites of the network, and different from those associated with tremor signals. Throughout the analysed time interval, LP spectra and waveforms maintain significant similarity, thus indicating the involvement of a non-destructive source process that we interpret in terms of the resonance of a fluid-filled buried cavity. Polarisation analysis indicates radiation from a non-isotropic source involving large amounts of shear. Concurrently with LP signals, recordings from the summit station also depict Very-Long-Period (VLP) pulses whose rectilinear motion points to a region located beneath the summit craters at depths ranging between 800 and 1100 m beneath the surface. Based on a refined repicking of similar waveforms, we obtain robust locations for a selected subset of the most energetic LP events from probabilistic inversion of travel-times calculated for a 3D heterogenous structure. LP sources cluster in a narrow volume located beneath the summit craters, and extending to a maximum depth of ≈ 800 m beneath the surface. No causal relationships are observed between LP, VLP and tremor activities and the onset of the 2004–2005 lava effusions, thus indicating that magmatic overpressure played a limited role in triggering this eruption. These data represent the very first observation of LP and VLP activity at Etna during non-eruptive periods, and open the way to the quantitative modelling of the geometry and dynamics of the shallow plumbing system.
    Description: Published
    Description: 340-354
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: long-period seismicity ; Etna volcano ; volcano monitoring ; precursor ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Between December 2004 and August 2005, more than 50,000 long-period events (LP) accompanied by very-long period pulses (VLP) were recorded at Mt. Etna, encompassing the effusive eruption which started in September 2004. The observed activity can be explained by the injection of a gas slug formed within the magmatic column into an overlying cavity filled by either magmatic or hydrothermal fluids, thus triggering cavity resonance. Although a large number of LP events exhibit similar waveforms before the eruption, they change significantly during and after the eruption. We study the temporal evolution of the LP-VLP activity in terms of the source movement, change of the waveforms, temporal evolution of the dominant resonance frequencies and the source Q factor and changes in the polarization of the signal. The LP source locations before and after the eruption, respectively, do not move significantly, while a slight movement of the VLP source is found. The intensity of the LP events increases after the eruption as well as their dominant frequency and Q factor, while the polarization of the signals changes from predominantly transversal to pure radial motion. Although in previous studies a link between the observed LP activity and the eruption was not found, these observations suggest that such a link was established at the latter end of the eruptive sequence, most likely as a consequence of a reestablishment of the pressure balance in the plumbing system, after it was undermined due to the discharge of large amounts of resident magma during the eruption. Based on the polarization properties of the signal and geological setting of the area, a fluid-filled crack is proposed as the most likely source geometry. The spectral analysis based on the autoregressive-models (SOMPI) is applied to the signals in order to analyse the resonance frequencies and the source Q-factors. The results suggest water and basalt at low gas volume fraction as the most likely fluids involved in the source process. Using theoretical relations for the “slow waves” radiated from the fluid-filled crack, we also estimate the crack size for both fluids, respectively.
    Description: Published
    Description: 205-220
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; long-period seismicity ; Etna volcano ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...