ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters  (6)
  • Astronomy
  • J24
  • Life Sciences (General)
  • Volcano monitoring
  • Elsevier  (6)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: This paper discusses the abundance, speciation and mobility of As in groundwater systems from active volcanic areas in Italy. Using literature data and new additional determinations, the main geochemical processes controlling the fate of As during gas–water–rock interaction in these systems are examined. Arsenic concentrations in the fluids range from 0.1 to 6940 mg/l, with wide differences observed among the different volcanoes and within each area. The dependence of As content on water temperature, pH, redox potential and major ions is investigated. Results demonstrate that As concentrations are highest where active hydrothermal circulation takes place at shallow levels, i.e. at Vulcano Island and the Phlegrean Fields. In both areas the dissolution of As-bearing sulphides is likely to be the main source of As. Mature Cl-rich groundwaters, representative of the discharge from the deep thermal reservoirs, are typically enriched in As with respect to SO4-rich ‘‘steam heated groundwaters’’. In the HCO3 groundwaters recovered at Vesuvius and Etna, aqueous As cycling is limited by the absence of high-temperature interactions and by high-Fe content of the host rocks, resulting in oxidative As adsorption. Thermodynamic modelling suggests that reducing H2S-rich groundwaters are in equilibrium with realgar, whereas in oxidising environments over-saturation with respect to Fe oxyhydroxides is indicated. Under these oxidising conditions, As solubility decreases controlled by As co-precipitation with, or adsorption on, Fe oxy-hydroxides. Consistent with thermodynamic considerations, As mobility in the studied areas is enhanced in intermediate redox environments, where both sulphides and Fe hydroxides are unstable.
    Description: Published
    Description: 1283–1296
    Description: partially_open
    Keywords: Hydrogeochemistry ; Arsenic ; volcanic groundwaters ; speciation ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 703456 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Radon levels were measured in 119 groundwater samples collected throughout the active volcanic area of Mt. Etna by means of a portable Lucas-type scintillation chamber. The measured activity values range from 1.8 to 52.7 Bq l 1. About 40% of the samples exceed the maximum contaminant level of 11 Bq l 1 proposed by the USEPA in 1991. The highest radon levels are measured in the eastern sector of the volcano, which is the seismically most active zone of the volcano. On the contrary the south-western sector, which is both seismically active and a site of intense magmatic degassing, display lower radon levels. This is probably due to the formation of a free gas phase (oversaturation of CO2) that strips the radon from the water. Comparison of the data gathered at Mt. Etna with those of other areas indicates that 222Rn activity in groundwater is positively correlated with both the content of parent elements in the aquifer rocks and the temperature of the geothermal systems that interacts with the sampled aquifers.
    Description: Published
    Description: 187–201
    Description: partially_open
    Keywords: Groundwater ; Radon ; Mount Etna ; Active volcanic areas ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 841512 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: An extensive geochemical survey of the fluids released by the volcanic/geothermal system of Methana was undertaken. Gases were characterized based on the chemical and isotopic [helium (He) and carbon (C)] analysis of 27 samples. Carbon dioxide soil gas concentration and fluxes were measured at 179 sampling sites throughout the peninsula. Forty samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of the aquifers. Gases of hydrothermal origin gave a preliminary geothermometric estimate of about 210 °C. The He-isotope composition indicated mantle contributions of up to 40%, and the C-isotope composition of CO2 indicated that it predominantly (〉90%) originated from limestone decomposition. The groundwater composition was suggestive of mixing between meteoric and hydrothermally modified sea-water endmembers and water–rock interaction processes limited to simple rock dissolution driven by an increased endogenous CO2 content. All of the thermal manifestations and anomalous degassing areas, although of limited extent, were spatially correlated with the main active tectonic system of the area. The total CO2 output of the volcanic system has been preliminary estimated to be less than 0.05 kg s–1. Although this value is very low compared to those of other volcanic systems, anomalous CO2 degassing at Methana – which is currently restricted to limited areas and at present is the only volcanic risk of the peninsula – is a potential gas hazard that warrants further assessment in future studies.
    Description: Published
    Description: 818-828
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Methana ; south Aegean volcanic arc ; fluids geochemistry ; soil gases ; groundwaters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: New geochemical data on dissolved major and minor constituents in 276 groundwater samples from Etna aquifers reveal the main processes responsible for their geochemical evolution and mineralisation. This topic is of particular interest in the light of the progressive depletion of water resources and groundwater quality in the area. Multivariate statistical analysis reveal 3 sources of solutes: (a) the leaching of the host basalt, driven by the dissolution of magmaderived CO2; (b) mixing processes with saline brines rising from the sedimentary basement below Etna; (c) contamination from agricultural and urban wastewaters. The last process, highlighted by increased concentrations of SO4,NO3, Ca, F and PO4, is more pronounced on the lower slopes of the volcanic edifice, associated with areas of high population and intensive agriculture. However, this study demonstrates that natural processes (a) and (b) are also very effective in producing highly mineralised waters, which in turn results in many constituents (B, V, Mg) exceeding maximum admissible concentrations for drinking water.
    Description: Published
    Description: 863–882
    Description: partially_open
    Keywords: Hydrogeochemistry ; water quality ; Mt. Etna ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 787985 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: This study reports on the first quantitative assessment of the geochemical cycling of volcanogenic elements, from their atmospheric release to their deposition back to the ground. Etna’s emissions and atmospheric depositions were characterised for more than 2 years, providing data on major and trace element abundance in both volcanic aerosols and bulk depositions. Volcanic aerosols were collected from 2004 to 2007, at the summit vents by conventional filtration techniques. Precipitation was collected, from 2006 to 2007, in five rain gauges, at various altitudes around the summit craters. Analytical results for volcanic aerosols showed that the dominant anions were S, Cl, and F, and that the most abundant metals were K, Ca, Mg, Al, Fe, and Ti (1.5–50 lg m 3). Minor and trace element concentrations ranged from about 0.001 to 1 lg m 3. From such analysis, we derived an aerosol mass flux ranging from 3000 to 8000 t a 1. Most analysed elements had higher concentrations close to the emission vent, confirming the prevailing volcanic contribution to bulk deposition. Calculated deposition rates were integrated over the whole Etna area, to provide a first estimate of the total deposition fluxes for several major and trace elements. These calculated deposition fluxes ranged from 20 to 80 t a 1 (Al, Fe, Si) to 0.01–0.1 t a 1 (Bi, Cs, Sc, Th, Tl, and U). Comparison between volcanic emissions and atmospheric deposition showed that the amount of trace elements scavenged from the plume in the surrounding of the volcano ranged from 0.1% to 1% for volatile elements such as As, Bi, Cd, Cs, Cu, Tl, and from 1% to 5% for refractory elements such as Al, Ba, Co, Fe, Ti, Th, U, and V. Consequently, more than 90% of volcanogenic trace elements were dispersed further away, and may cause a regional scale impact. Such a large difference between deposition and emission fluxes at Mt. Etna pointed to relatively high stability and long residence time of aerosols in the plume.
    Description: Published
    Description: 7401-7425
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: trace elements ; volcanic plume chemistry ; bulk deposition ; Etna ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-24
    Description: Many studies have assessed the strong influence of volcanic activity on the surrounding environment. This is particularly true for strong gas emitters such as Mt. Etna and Stromboli volcanoes. Among volcanic gases, fluorine compounds are potentially very harmful. Fluorine cycling through rainwater in the above volcanic areas was studied analysing more than 400 monthly bulk samples. Data indicate that only approximately 1% of fluorine emission through the plume is deposited on the two volcanic areas by meteoric precipitations. Although measured bulk rainwater fluorine fluxes are comparable to and sometimes higher than in heavily polluted areas, their influence on the surrounding vegetation is limited. Only annual crops, in fact, show some damage that could be an effect of fluorine deposition, indicating that long-living endemic plant species or varieties have developed some kind of resistance.
    Description: Published
    Description: 175–185
    Description: partially_open
    Keywords: Fluorine ; Rainwater chemistry ; Volcanic activity ; Mt. Etna ; Stromboli Island ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 1320202 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...