ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (14)
  • Wiley  (10)
  • Elsevier  (4)
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (4). pp. 3481-3499.
    Publication Date: 2020-02-06
    Description: We examine the mean pathways, transit timescales, and transformation of waters flowing from the Pacific and the marginal seas through the Indian Ocean (IO) on their way toward the South Atlantic within a high-resolution ocean/sea-ice model. The model fields are analyzed from a Lagrangian perspective where water volumes are tracked as they enter the IO. The IO contributes 12.6 Sv to Agulhas leakage, which within the model is 14.1 ± 2.2 Sv, the rest originates from the South Atlantic. The Indonesian Through-flow constitutes about half of the IO contribution, is surface bound, cools and salinificates as it leaves the basin within 10–30 years. Waters entering the IO south of Australia are at intermediate depths and maintain their temperature-salinity properties as they exit the basin within 15–35 years. Of these waters, the contribution from Tasman leakage is 1.4 Sv. The rest stem from recirculation from the frontal regions of the Southern Ocean. The marginal seas export 1.0 Sv into the Atlantic within 15–40 years, and the waters cool and freshen on-route. However, the model's simulation of waters from the Gulfs of Aden and Oman are too light and hence overly influenced by upper ocean circulations. In the Cape Basin, Agulhas leakage is well mixed. On-route, temperature-salinity transformations occur predominantly in the Arabian Sea and within the greater Agulhas Current region. Overall, the IO exports at least 7.9 Sv from the Pacific to the Atlantic, thereby quantifying the strength of the upper cell of the global conveyor belt.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Highlights: • Comparison of global NEMO and FESOM configurations with emphasis on the Agulhas system. • Both models simulate a reasonable and comparable large-scale circulation. • Both models have individual strengths and weaknesses to match the observations of the WBC system. • The numerical cost of FESOM is twice the one of NEMO. Abstract: Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing. Although the number of 3D wet grid points used in FESOM is similar to that in the nested NEMO, FESOM uses about two times the number of CPUs to obtain the same model throughput (in terms of simulated model years per day). This is feasible due to the high scalability of the FESOM code.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-25
    Description: The western boundary current system off Brazil is a key region for diagnosing variations of the Atlantic meridional overturning circulation (AMOC) and the southern subtropical cell. In July 2013 a mooring array was installed off the coast at 11°S similar to an array installed between 2000 and 2004 at the same location. Here we present results from two research cruises and the first 10.5 months of moored observations in comparison to the observations a decade ago. Average transports of the North Brazil Undercurrent and the Deep Western Boundary Current (DWBC) have not changed between the observational periods. DWBC eddies that are predicted to disappear with a weakening AMOC are still present. Upper layer changes in salinity and oxygen within the last decade are consistent with an increased Agulhas leakage, while at depths water mass changes are likely related to changes in the North Atlantic as well as tropical circulation changes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 119 . pp. 69-76.
    Publication Date: 2020-08-05
    Description: Mesoscale eddies and meanders have been shown to be one of the dominant sources of flow variability in the world's ocean. One example of an isolated eddy hotspot is the South-West Indian Ridge (SWIR). Several investigations have shown that the SWIR and the corresponding planetary potential vorticity field (f/H) exert a strong influence on the location and dynamics of the Antarctic Circumpolar Current (ACC), resulting in substantial fragmentation of the jets downstream of the ridge. The easterly extension of this eddy corridor appears to be restricted to the deep channel separating the Conrad Rise from the Del Cano and Crozet Plateau. However, while the fate of eddies formed at the SWIR has been widely investigated and the frontal character of this eastward extension is well known, the zone of diminishing variability that extends southwards to approximately 60°S remains poorly sampled. Using a combination of Argo, AVISO and NCEP/NCAR datasets, the character of this eddy corridor as a conduit for warm core eddies to move across the ACC into the Antarctic zone is investigated. In this study, we track a single warm-core eddy as it moves southwards from an original position of 31°E, 50°20'S to where it dissipates 10 months later in the Enderby Basin at 56°20'S. An Argo float entrained within the eddy confirms that its water masses are consistent with water found within the Antarctic Polar Frontal Zone north of the APF. Latent and sensible heat fluxes are on average 8W/m2 and 10W/m2 greater over the eddy than directly east of this feature. It is estimated that the eddy lost an average of 5W/m2 of latent heat and 5W/m2 of sensible heat over a 1-year period, an amount capable of melting approximately 0.92m of sea ice. In addition, using an eddy tracking algorithm a total of 28 eddies are identified propagating southwards, 25 of which are anti-cyclonic in rotation. Based on the new Argo float data, combined with AVISO and NCEP/NCAR datasets, these results suggest that the southward passage of warm-core eddies act as vehicles transporting heat, salt and biota southwards across the ACC and into the eastern boundary of the Weddell gyre.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Advances in Modeling Earth Systems, 8 (2). pp. 904-916.
    Publication Date: 2019-07-17
    Description: If unstructured meshes are refined to locally represent eddy dynamics in ocean circulation models, a practical question arises on how to vary the resolution and where to deploy the refinement. We propose to use the observed sea surface height variability as the refinement criterion. We explore the utility of this method (i) in a suite of idealized experiments simulating a wind-driven double gyre flow in a stratified circular basin and (ii) in simulations of global ocean circulation performed with FESOM. Two practical approaches of mesh refinement are compared. In the first approach the uniform refinement is confined within the areas where the observed variability exceeds a given threshold. In the second one the refinement varies linearly following the observed variability. The resolution is fixed in time. For the double gyre case it is shown that the variability obtained in a high-resolution reference run can be well captured on variable-resolution meshes if they are refined where the variability is high and additionally upstream the jet separation point. The second approach of mesh refinement proves to be more beneficial in terms of improvement downstream the midlatitude jet. Similarly, in global ocean simulations the mesh refinement based on the observed variability helps the model to simulate high variability at correct locations. The refinement also leads to a reduced bias in the upper-ocean temperature
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 40 (15). pp. 3997-4000.
    Publication Date: 2017-06-20
    Description: Current research indicates an increase in Agulhas leakage for the past and coming decades. This change potentially alters the strength of the Atlantic meridional overturning circulation, in particular, through advection of positive density anomalies into the North Atlantic. To explore the fate of Agulhas leakage, results from a Lagrangian analysis were evaluated, with virtual floats advected within an eddy-permitting ocean model (ORCA025). A considerable fraction of Agulhas leakage reached the subtropical North Atlantic: of a mean Agulhas leakage transport of 15.3 Sv entering the South Atlantic, 9.7, 7.7, and 6.1 Sv crossed sections at 6 degrees S, 6 degrees N, and 26 degrees N, respectively. The most probable transit time of leakage to reach the respective latitudes is one to two decades. We suggest that changes in Agulhas leakage could manifest in the Gulf Stream regime most probably within two decades. These results were supported by an eddy-resolving implementation of the ocean model (INALT01)
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Sub-Antarctic islands represent critical breeding habitats for land-based top predators that dominate Southern Ocean food webs. Reproduction and molting incur high energetic demands that are sustained at the sub-Antarctic Prince Edward Islands (PEIs) by both inshore (phytoplankton blooms; "island mass effect"; autochthonous) and offshore (allochthonous) productivity. As the relative contributions of these sustenance pathways are, in turn, affected by oceanographic conditions around the PEIs, we address the consequences of climatically driven changes in the physical environment on this island ecosystem. We show that there has been a measurable long-term shift in the carbon isotope signatures of the benthos inhabiting the shallow shelf region of the PEIs, most likely reflecting a long-term decline in enhanced phytoplankton productivity at the islands in response to a climate-driven shift in the position of the sub-Antarctic Front. Our results indicate that regional climate change has affected the balance between allochthonous and autochthonous productivity at the PEIs. Over the last three decades, inshore-feeding top predators at the islands have shown a marked decrease in their population sizes. Conversely, population sizes of off-shore-feeding predators that forage over great distances from the islands have remained stable or increased, with one exception. Population decline of predators that rely heavily on organisms inhabiting the inshore region strongly suggest changes in prey availability, which are likely driven by factors such as fisheries impacts on some prey populations and shifts in competitive interactions among predators. In addition to these local factors, our analysis indicates that changes in prey availability may also result indirectly through regional climate change effects on the islands' marine ecosystem. Most importantly, our results indicate that a fundamental shift in the balance between allochthonous and autochthonous trophic pathways within this island ecosystem may be detected throughout the food web, demonstrating that the most powerful effects of climate change on marine systems may be indirect.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-10
    Description: The Indian-Atlantic water exchange south of Africa (Agulhas leakage) is a key component of the global ocean circulation. No quantitative estimation of the paleo-Agulhas leakage exists. We quantify the variability in interocean exchange over the past 640,000 years, using planktic foraminiferal assemblage data from two marine sediment records to define an Agulhas leakage efficiency index. We confirm the validity of our new approach with a numerical ocean model that realistically simulates the modern Agulhas leakage changes. Our results suggest that, during the past several glacial-interglacial cycles, the Agulhas leakage varied by ~10 sverdrup and more during major climatic transitions. This lends strong credence to the hypothesis that modifications in the leakage played a key role in changing the overturning circulation to full strength mode. Our results are instrumental for validating and quantifying the contribution of the Indian-Atlantic water leakage to the global climate changes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 40 (9). pp. 1772-1776.
    Publication Date: 2017-05-24
    Description: Deep current meter data and output from two high-resolution global ocean circulation models are used to determine the prevalence and location of strong bottom currents in the greater Agulhas Current system. The two models and current meter data are remarkably consistent, showing that benthic storms, with bottom currents greater than 0.2 m s(-1), occur throughout the Agulhas retroflection region south of Africa more than 20% of the time. Furthermore, beneath the mean Agulhas Current core and the retroflection front, bottom currents exceed 0.2 m s(-1) more than 50% of the time, while away from strong surface currents, bottom currents rarely exceed 0.2 m s(-1). Implications for sediment transport are discussed and the results are compared to atmospheric storms. Benthic storms of this strength (0.2 m s(-1)) are comparable to a 9 m s(-1) (Beaufort 5) windstorm, but scaling shows that benthic storms may be less effective at lifting and transporting sediment than dust storms.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-06-21
    Description: Highlights: • We coupled LA-ICP-MS Me/Ca single-chamber composition of four planktonic foraminifera with eddy induced hydrographic changes • The Mg/Ca-based temperature difference between N. dutertrei and G. scitula are likely to be an eddy proxy suitable for down-core application • Near-surface dwelling species inhabit well oxygenated surface waters and show lower test Mn/Ca values, compared to deeper dwelling species • Planktonic foraminifera Mn/Ca test values are in line with water column variability in dissolved Mn concentrations Hydrographic conditions in the Mozambique Channel are dominated by the passing of large anticyclonic eddies, propagating poleward into the upstream Agulhas area. Further south, these eddies have been found to control the shedding of Agulhas rings into the Atlantic ocean, thereby playing a key role in Indo-Atlantic Ocean exchange. The element composition of several planktonic foraminifera species collected from sediment trap samples, was compared to in situ water column data from the Mozambique Channel. Single-chamber trace element composition of these foraminifera reveals a close coupling with hydrographic changes induced by anticyclonic eddies. Obtained Mg/Ca values for the surface dwelling Globigerinoides ruber as well as the thermocline dwelling Neogloboquadrina dutertrei follow temperature changes and reduced temperature stratification during eddy conditions. At greater depth. Globorotalia scitula and Pulleniatina obliquiloculata record stable temperatures and thus respond to hydrographic changes with a deepening in habitat depth. Furthermore, test Mn/Ca values indicate a close relationship between water column oxygenation and Mn incorporation in these planktonic foraminiferal species
    Type: Article , PeerReviewed
    Format: other
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...