ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • Elsevier  (5)
  • Springer  (1)
  • The Royal Society  (1)
Collection
Years
  • 1
    Publication Date: 2020-02-06
    Description: Highlights • Numerical model of sill intrusions in sedimentary basins. • Fracture and vent formation due to overpressure generation. • Methane fluxes through a single vent with upscaling to basin scales. • Additional regions in the NAIP required to correlate methane venting and the PETM. Abstract Vent structures are intimately associated with sill intrusions in sedimentary basins globally and are thought to have been formed contemporaneously due to overpressure generated by gas generation during thermogenic breakdown of kerogen or boiling of water. Methane and other gases generated during this process may have driven catastrophic climate change in the geological past. In this study, we present a 2D FEM/FVM model that accounts for ‘explosive’ vent formation by fracturing of the host rock based on a case study in the Harstad Basin, offshore Norway. Overpressure generated by gas release during kerogen breakdown in the sill thermal aureole causes fracture formation. Fluid focusing and overpressure migration towards the sill tips results in vent formation after only few tens of years. The size of the vent depends on the region of overpressure accessed by the sill tip. Overpressure migration occurs in self-propagating waves before dissipating at the surface. The amount of methane generated in the system depends on TOC content and also on the type of kerogen present in the host rock. Generated methane moves with the fluids and vents at the surface through a single, large vent structure at the main sill tip matching first-order observations. Violent degassing takes place within the first couple of hundred years and occurs in bursts corresponding to the timing of overpressure waves. The amount of methane vented through a single vent is only a fraction (between 5 and 16%) of the methane generated at depth. Upscaling to the Vøring and Møre Basins, which are a part of the North Atlantic Igneous Province, and using realistic host rock carbon content and kerogen values results in a smaller amount of methane vented than previously estimated for the PETM. Our study, therefore, suggests that the negative carbon isotope excursion (CIE) observed in the fossil record could not have been caused by intrusions within the Vøring and Møre Basins alone and that a contribution from other regions in the NAIP is also required to drive catastrophic climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Highlights • We have tested a hypothesis where a sill intrusion is present at depth near Lusi. • We have calculated the CO2 generation following the emplacing a 150 m sill in an organic rich sequence at 4.5 km. • This scenario may provide the CO2 currently emitted from Lusi, and are consistent with geological information. Abstract The Lusi mud eruption started in 2006 and is located near the Arjuno-Welirang volcanic complex in Northeastern Java. Lusi is characterized by the eruption of aqueous vapor, CO2, and CH4 in addition to mud breccia and boiling water. However, the ultimate driving force for the eruption remains unclear. Here we investigate if Lusi could have been driven by the heat released from a deep-seated igneous sill originating from the neighboring volcanic arc. We have used a 1D thermal model to calculate the production of CO2 from thermally matured organic matter in the contact aureole of a hypothetical 150 m thick sill. The sill is tentatively emplaced at 1100 °C at 4.5 km depth within the organic-rich Eocene Ngimbang Formation. The carbon gas produced from the thermal perturbation reaches a peak of 1357 kg/m2/y CO2 equivalents shortly after sill emplacement, stressing the efficiency of organic matter transformation in contact aureoles. Our simulations show that during the first 1000 years after emplacement, 53.5 ton CO2/m2 is produced in the contact aureole. When scaled to a sill size of 150 m × 25 km2, i.e., a sill volume of 3.75 km3, the aureole has the potential to generate a total of 1350 Mt CO2 during the first 1000 years, with a peak generation of about 34 Mt CO2/y. We conclude that contact metamorphism in our hypothetical geological scenario generates CO2 in the gigaton range and represents a plausible source for the Lusi gas.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 296 (1/2). pp. 34-44.
    Publication Date: 2019-09-23
    Description: Hydration of the oceanic lithosphere is an important and ubiquitous process which alters both the chemical and physical properties of the affected lithologies. One of the most important reactions that affect the mantle is serpentinization. The process of serpentinization results in a drastic decrease in the density (up to 40%), seismic velocity and brittle strength as well as water uptake of up to 13 wt.% of the ultramafic rock. In this paper, we use numerical models to study the amount and extent of serpentinization that may occur at mid-ocean ridges and its effects on fluid flow within the lithosphere. The two dimensional, FEM model solves three coupled, time-dependent equations: (i) mass-conserving Darcy flow equation, (ii) energy conserving heat transport equation and (iii) serpentinization rate of olivine with feedbacks to temperature (exothermic reaction), fluid consumption and variations in porosity and permeability (volume changes). The thermal structure of the ridge is strongly influenced by rock permeability in addition to the spreading velocity of the ridge. Increased rock permeability enhances hydrothermal convection and results in efficient heat mining from the lithosphere whereas higher spreading velocities result in a higher thermal gradient. Serpentinization of the oceanic mantle, in turn, depends on the aforementioned, competing processes. However, serpentinization of mantle rocks is itself likely to result in strong variations of rock porosity and permeability. Here we explore the coupled feedbacks. Increasing rates of serpentinization lead to large volume changes and therefore, rock fracturing thereby increasing rock porosity/permeability while as serpentinization reaches completion, the open pore space in the rock is reduced due to the relative dominance of mineral precipitation. Although, variations in the relation between porosity and permeability and serpentinization before the reaction reaches completion do not significantly affect the degree of serpentinization, we find that unreasonably large portions of the mantle would be serpentinized if rock closure does not occur at the final reaction stage. The amount of water trapped as hydrous phases within the mantle shows a strong dependency on the spreading velocity of the ridge with water content ranging from 0.18 × 105 kg/m2 to 2.52 × 105 kg/m2. Additionally, two distinct trends are observed where the water content in the mantle at slow-spreading ridges drops dramatically with an increase in spreading velocity. The amount of water trapped in the mantle at fast-spreading ridges, on the other hand, is lower and does not significantly depend on spreading velocity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: The genesis of oceanic crust at intermediate to fast spreading ridges occurs by the crystallization of mantle melts accumulated in at least one shallow melt lens situated below the ridge axis. Seismic reflection data suggest that the depth of this melt lens is inversely correlated with spreading rate and thereby magma supply. The heat released in it by crystallization and melt injection is removed by a combination of hydrothermal cooling and diffusion. Due to the different time scales of hydrothermal cooling and crustal accretion, numerical models have so far focused on only one of the two processes. Here we present the results from a coupled model that solves simultaneously for crustal accretion and hydrothermal cooling. Our approach resolves both processes within one 2D finite-element model that self-consistently solves for crustal, mantle, and hydrothermal flow. The formation of new oceanic crust is approximated as a gabbro glacier, in which the entire lower crust crystallizes in one shallow melt lens. We find that the depth of the melt lens and the shape of hot (potentially molten) lower crust are highly dependent on the ridge permeability structure. The predicted depth of the melt lens is primarily controlled by the permeability at the ridge axis, whereas the off-axis permeability determines the width of hot lower crust. A detailed comparison of the modeling results with observed locations of the melt lens at intermediate to fast spreading ridges shows that only a relatively narrow range of crustal permeabilities is consistent with observations. In addition, we find significant deviations between models that resolve or parameterize hydrothermal cooling: the predicted crustal thermal structures show major differences for models that predict the same melt lens location. This illustrates the importance of resolving hydrothermal flow in simulations of crustal accretion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 280 (1/4). pp. 159-166.
    Publication Date: 2016-10-14
    Description: Various theoretical and numerical models have been proposed in order to explain joint formation and spacing in layered rock series. However, most of these models assume that the interfaces between the rock layers are perfectly welded, i.e. no slip occurs, and that all the layers are subjected to the same remote strain due to various processes (e.g. tectonic processes). Other factors may also induce extensional strain in rocks, e.g. phase transformations. However, such processes may induce different amounts of strain on the layers in a rock series leading to a strain mismatch between these layers. In this paper, we present a 1-D finite difference linear elastic model which allows joint formation within the middle layer in a three-layer rock series and is induced by a strain mismatch between the fractured, central layer and the surrounding matrix. Furthermore, the central layer in our model is not necessarily welded to the matrix layers and is allowed to slip along the interfaces between these layers if the shear strength of the material at the interface is reached. We find that the final fracture spacing to layer thickness ratio (S/Tf) in such layered systems is directly proportional to the ratio of the tensile and shear strength of the material. Changes in the material properties such as the shear modulus or Young's modulus do not affect these results. A natural analog of joint formation driven by phase transformations is found in the orthopyroxenite dykes of the Leka Ophiolite Complex (LOC), Norway. Joint formation in orthopyroxenite dykes results from serpentinization-driven expansion of the surrounding dunite matrix. Detailed field studies and measurements (583 sample points) yield S/Tf ratios between 0.1 and 1.0 with a mean value of 0.45 ± 0.20. We demonstrate that the strain mismatch-driven joint formation associated with interfacial slip explains the low S/Tf ratios obtained from field measurements and may also help us constrain rock strength.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: In this paper, we constrain the input and output fluxes of H2O, Cl and S into the southern-central Chilean subduction zone (31°S–46°S). We determine the input flux by calculating the amounts of water, chlorine and sulfur that are carried into the subduction zone in subducted sediments, igneous crust and hydrated lithospheric mantle. The applied models take into account that latitudinal variations in the subducting Nazca plate impact the crustal porosity and the degree of upper mantle serpentinization and thus water storage in the crust and mantle. In another step, we constrain the output fluxes of the subduction zone both to the subcontinental lithospheric mantle and to the atmosphere–geosphere–ocean by the combined use of gas flux determinations at the volcanic arc, volume calculations of volcanic rocks and the combination of mineralogical and geothermal models of the subduction zone. The calculations indicate that about 68 Tg/m/Ma of water enters the subduction zone, as averaged over its total length of 1,480 km. The volcanic output on the other hand accounts for 2 Tg/m/Ma or 3 % of that input. We presume that a large fraction of the volatiles that are captured within the subducting sediments (which accounts for roughly one-third of the input) are cycled back into the ocean through the forearc. This assumption is however questioned by the present lack of evidence for major venting systems of the submarine forearc. The largest part of the water that is carried into the subduction zone in the crust and hydrated mantle (accounting for two-thirds of the input) appears to be transported beyond the volcanic arc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    The Royal Society
    In:  Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376 (2130). p. 20170080.
    Publication Date: 2021-02-08
    Description: On its way to the surface, the Siberian Traps magma created a complex sub-volcanic plumbing system. This resulted in a large-scale sill emplacement within the Tunguska Basin and subsequent release of sediment-derived volatiles during contact metamorphism. The distribution of sills and the released sediment-stored gas volume is, however, poorly constrained. In this paper, results from a study of nearly 300 deep boreholes intersecting sills are presented. The results show that sills with thicknesses above 100 m are abundant throughout the upper part of the sedimentary succession. A high proportion of the sills was emplaced within the Cambrian evaporites with average thicknesses in the 115-130 m range and a maximum thickness of 428 m. Thermal modelling of the cooling of the sills shows that the contact metamorphic aureoles are capable of generating 52-80 tonnes of CO2 m(-2) with contributions from both marine and terrestrial carbon. When up-scaling these borehole results, an area of 12-19 000 km(2) is required to generate 1000 Gt CO2. This represents only 0.7-1.2% of the total area in the Tunguska Basin affected by sills, emphasizing the importance of metamorphic gas generation in the Siberian Traps. These results strengthen the hypothesis of a sub-volcanic trigger and driver for the environmental perturbations during the End-Permian crisis. This article is part of a discussion meeting issue 'Hyperthermals: rapid and extreme global warming in our geological past'.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...