ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-08-01
    Description: The spatial distribution of 414 earthquakes (1.0〈 or =M (sub L) 〈 or =4.6), recorded from 1994 to 2002 in southeastern Sicily (Italy), has been analyzed. The seismicity generally coincides with mapped Plio-Quaternary faults, including the north-northwest-south-southeast striking offshore fault system, which is the most important tectonic structure of the area. For the best located events, we computed 70 focal mechanisms by combining P-wave polarities with S-wave polarizations. A predominance of strike slip and normal faults was observed. Focal mechanisms were then inverted for stress tensor parameters by using the algorithm of Gephart and Forsyth. The results highlighted a region governed mainly by a north-northwest-south-southeast to northwest-southeast compressional stress regime. Moreover, anisotropy analysis of shear waves showed a polarization of fast S waves coherently aligned with this stress direction. A finer-scale analysis of the stress tensor evidenced three regions characterized by slightly differing orientation of the greatest principal stress axis, sigma (sub 1) . The eastern sector displays a nearly horizontal sigma (sub 1) trending northwest-southeast; the central sector is affected by a low-dip north-northwest-south-southeast sigma (sub 1) ; whereas, in the western sector, a north-northwest-south-southeast-oriented sigma (sub 1) with a higher dip angle, was detected. Finally, the comparison of the spatial distribution of seismicity occurring during 1994-2002, with locations of previous instrumental earthquakes and larger (M〉 or =5.0) historical events showed that the seismicity patterns are persistent.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-15
    Description: The eruptive events of the July–August 2001 and October 2002–January 2003 at Mt. Etna provide new insights for reconstructing the complex geometry of the feeding system and their relationship to regional tectonics. The 2001 eruption took place mainly on the upper southern sector of the volcano. The eruption was preceded by a large earthquake swarm for a few days before its onset and accompanied by ground deformation and fracturing. The development of surface cracking along with the seismic pattern has allowed us to recognize three distinct eruptive systems (the SW–NE, NNW–SSE and N–S systems) which have been simultaneously active. Such eruptive systems are only the upper portions of a complex feeding system that was fed at the same time by two distinct magmas. The SW–NE and NNW–SSE systems, connected with the SE crater conduit, were fed by magma coming from depth, whereas the N–S system served instead as an ascending pathway for an amphibole-bearing magma residing in a shallow reservoir. The eruptive activity started again on October 2002 on the NE Rift Zone, where about 20 eruptive vents were aligned between 2500 and 1900 m a.s.l., and on the southern flank, from the central crater to the Montagnola. The onset of eruptive activity was accompanied by a seismic swarm. As in the 2001 eruptive event, two independent feeding systems formed, characterized by distinct magmas. The SW–NE system controlled the feeding of the Northeast Rift and was accommodated by left-lateral displacement along the WNW–ESE trending Pernicana Fault. The N–S system fed the eruptions on the southern flank. Moreover, the associated crustal deformation triggered seismic reactivation of tectonic structures in the eastern flank of the volcano and offshore. These two last eruptions indicate that at Mt. Etna the ascent of magma, as well as the accommodation of deformation, is strongly dominated by local extensional structures that are connected to a regional tectonic regime.
    Description: Published
    Description: 211-233
    Description: partially_open
    Keywords: extensional tectonics ; volcanic activity ; seismicity ; Sicily ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 5898384 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The spatial distribution of 414 earthquakes (1.0 ≤ ML ≤ 4.6), recorded from 1994 to 2002 in Southeastern Sicily (Italy), has been analyzed; it generally coincides with mapped Plio-Quaternary faults, including the NNW-SSE offshore fault system which is the most important tectonic structure of the area. For the best located events, we computed 70 focal mechanisms by combining P-wave polarities with S-wave polarizations. A predominance of strike-slip and normal faults was observed. Focal mechanisms were then inverted for stress tensor parameters using the algorithm of Gephart and Forsyth. The results highlighted a region governed mainly by a compressional stress regime. Moreover, anisotropy analysis of shear-waves showed a polarization of fast S-waves prevalently aligned in the NNW-SSE to NW-SE direction over the whole area. A finer analysis of stress tensor evidenced three regions characterized by slightly differing orientation of the greatest principal stress axis, 1. The eastern sector displays a nearly horizontal 1 trending NW-SE; the central sector is affected by a low dip NNW-SSE 1; whereas in the western sector a 1 NNW-SSE oriented, with a higher dip angle, was detected. Finally, the comparison of the spatial distribution of seismicity occurring during 1994-2002, with locations of previous instrumental earthquakes and larger (M ≥ 5.0) historical events showed that the seismic patterns are persistent.
    Description: Published
    Description: 1359–1374
    Description: JCR Journal
    Description: reserved
    Keywords: Stress direction ; focal mechanisms ; Shear-Wave Anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We investigate the relationship between changes of the gravity field and the release of the seismic energy at Mt. Etna over a 12-year period (1994-2006), during which the volcano exhibited different eruptive patterns. Over the two sub-periods when intense gravity decreases occur, centered on the upper southeastern sector of the volcano (late-1996 to mid-1999 and late-2000 to mid-2001), the strain release curve displays neat long-term accelerations, with many hypocenters clustered in the volume containing the gravity source. Various evidences suggest that, since 1994 and until the breakout of the 2001 eruption, the eastern flank of Etna remained peripheral to the lines of rise of the magma from the deep storage to the surface. Accordingly, we hypothesize that, rather than being directly associated to the migration of the magma, the joint anomalies we found image phases of higher tensile stress on the upper southeastern sector, associated to increase in the rate of microfracturing along the NNW-SSE fracture zone. Such an increase implies a local density (gravity) decrease, and an increase in the release of seismic energy, thus explaining the correlation we observe. The second period of gravity decrease/strain release increase culminated in the breakout of the 2001 flank eruption, as a pressurized deeper magma accumulation used the inferred zone of increasing microfracturing as a path to the surface. This eruption marks an important modification in the structure of Etna’s plumbing system, as also testified by the absence of post-2001 long-term gravity changes and accelerations in the strain release curve and the neat modification of the seismicity and ground deformation patterns. Thus we prove that joint microgravity and seismic studies can allow zones of the medium experiencing an increase in the rate of microfracturing to be identified months to years before a magma batch is conveyed through them to the surface, setting off a lateral eruption.
    Description: Published
    Description: 282–292
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: microgravity changes ; seismic strain release ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Tectonic stress in the Pacific Northwest Washington is dominated by a N-S major compressive axis s1 and a minor compressive axis s3 which varies from E-W to near vertical. Minor variations in this pattern occur in different parts of the region. In this study we used ca. 550 earthquakes in the central Washington Cascade Mountains to study in detail the uniformity of the stress tensor in this volcanic arc. Earthquakes from the Pacific Northwest Seismograph Network (PNSN) catalogue were divided into several subsets based on epicentral and depth groupings and stress-tensor inversions using the Gephart and Forsyth technique were computed for each group. As in previous similar studies the maximum compressive stress axis (s1) is nearly horizontal and trending ca. N-S and NNE-SSW in all but one subset. Shallower events directly under Mount Rainier have a near vertical s1. For other subsets the minimum compressive stress axis (s3) deviates from vertical to horizontal for different groups of events. In particular, events in the depth range of 10-14 km in the Western Rainier Seismic Zone (WRSZ) have near vertical s3 direction while other depth ranges in this area show a near horizontal, E-W s3 orientation. We hypothesize that the change in orientation of 3 for the 10-14 km depth range in the WRSZ is probably due to the influence of the nearby Mount Rainier magmatic system.
    Description: Published
    Description: 811-821
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: focal mechanism ; stress tensor ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...