ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • Elsevier  (5)
  • Nature Research  (2)
Collection
Years
  • 1
    Publication Date: 2020-02-06
    Description: We have developed a global biogeographic classification of the mesopelagic zone to reflect the regional scales over which the ocean interior varies in terms of biodiversity and function. An integrated approach was necessary, as global gaps in information and variable sampling methods preclude strictly statistical approaches. A panel combining expertise in oceanography, geospatial mapping, and deep-sea biology convened to collate expert opinion on the distributional patterns of pelagic fauna relative to environmental proxies (temperature, salinity, and dissolved oxygen at mesopelagic depths). An iterative Delphi Method integrating additional biological and physical data was used to classify biogeographic ecoregions and to identify the location of ecoregion boundaries or inter-regions gradients. We define 33 global mesopelagic ecoregions. Of these, 20 are oceanic while 13 are ‘distant neritic.’ While each is driven by a complex of controlling factors, the putative primary driver of each ecoregion was identified. While work remains to be done to produce a comprehensive and robust mesopelagic biogeography (i.e., reflecting temporal variation), we believe that the classification set forth in this study will prove to be a useful and timely input to policy planning and management for conservation of deep-pelagic marine resources. In particular, it gives an indication of the spatial scale at which faunal communities are expected to be broadly similar in composition, and hence can inform application of ecosystem-based management approaches, marine spatial planning and the distribution and spacing of networks of representative protected areas
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-07
    Description: Coleoid cephalopods are thought to go through only one reproductive cycle in their life. We here report that vampire squid (Vampyroteuthis infernalis) show evidence of multiple reproductive cycles. Female vampire squid spawn their eggs, then return to a resting reproductive state, which is followed by the development of a new batch of eggs. This reproductive cycle is likely to be repeated more than twenty times. This combination of reproductive traits is different from that of any other extant coleoid cephalopod.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 300 (1-2). pp. 253-272.
    Publication Date: 2021-08-24
    Description: The deep pelagic habitat is a vast volume of cold, dark water where food is scarce and bioluminescence is the principal source of light and communication. Understanding the adaptations that allow animals to successfully inhabit this daunting realm has been a difficult challenge because investigators have had to conduct their work remotely. Research in the deep water column is going through an essential transformation from indirect to direct methods as undersea vehicles provide unprecedented access, new capabilities, and new perspectives. Traditional methods have accurately documented the meso- and macro-scale zoogeographic patterns of micronekton and zooplankton, as well as their distribution and migration patterns in the vertical plane. The new in situ technologies have enabled advances in studies of behavior, physiology, and in particular, the role of gelatinous animals in deep pelagic ecology. These discoveries reveal a deep-water fauna that is complex and diverse and still very poorly known.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 313 (2). pp. 375-387.
    Publication Date: 2021-08-23
    Description: The majority of squid families (Teuthoidea: Cephalopoda) exchange sodium for ammonium, creating a low-density fluid that imparts lift for neutral buoyancy. However, previous methods for measuring ammonium did not distinguish between NH4+ and various other amine compounds. The present study, using single column ion chromatography, reassessed the cation concentrations in several midwater cephalopod species. High NH4+ levels were confirmed for histioteuthid, cranchiid, and chiroteuthid and related squids. A strong relationship is reported between ammonium content and body mass in Histioteuthis heteropsis, suggesting a gradual accumulation of ammonium coincident with an ontogenetic migration to greater depths. The bathypelagic squids Bathyteuthis abyssicola and Bathyteuthis berryi, on the other hand, contained very little ammonium but rather contained large quantities of an as yet unidentified cation. The ecological significance of this compound is not yet known. Morphology in Bathyteuthid squids suggests that the unknown cation is contained intracellularly and so, unlike sequestered ammonia, does not diminish the space available for muscle tissue. Accordingly, protein measurements in B. berryi mantle muscle are on par with shallower-living muscular squids, and in situ submersible observations reveal strong locomotory abilities relative to other deep-water squids.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Highlights: • The pace of life of life of vampire squid and Japetella were examined. • Japetella diaphana and Vampyroteuthis infernalis have contrasting reproductive strategies. • Brooding in Japetella is estimated to last for two years in water temperature ~4 °C. • Feeding ecology and metabolic rates suggest non-daily deposition of beak growth increments. • Both species’ life-history traits suggest a slow pace of life and longer lifespans.The pelagic cephalopods Japetella diaphana and Vampyroteuthis infernalis are charismatic and widely distributed members of deep pelagic ecosystems. Their habitat temperatures, metabolic rates, feeding and reproductive strategies all together suggest that the pace of life in these species is reduced when compared to neritic octopod species, but information on longevity, growth rates and age estimations are absent to date. To estimate the pace of life in pelagic octopods, this study investigated size at maturity, reproductive strategy, and the number of growth-increments in the upper beak lateral walls (LWS) of J. diaphana (an octopod) and V. infernalis (a vampyromorph). Daily deposition of growth increments in hard body structures (e.g., beaks and stylets) has been validated experimentally in some temperate and tropical octopods, but remains unquantified and not yet validated for most deep-sea and high-latitude cephalopods. We used a diverse assemblage of specimens ranging from early juveniles to adults for both species. Mature J. diaphana had a mantle length (ML) of 53–144 mm and a body mass (BM) of 18–235 g. A brooding female of J. diaphana captured at 1352 m in the Gulf of California was carrying 1419 eggs in pre-organogenetic stage that measured ~2.5 mm in diameter. The size range of mature V. infernalis was ML 66–122 mm and BM 34–286 g. The number of growth increments in the beaks ranged from 21 to 207 in J. diaphana and from 89 to 375 in V. infernalis. If the growth increments are formed daily, like in tropical octopod species, age estimates are incongruent with the low metabolic rates and reproductive strategies of the two species. These observations suggest that growth increments may require more than one day to be formed. To better understand the life histories of invertebrates in the largest but least studied habitat on the planet, age and growth validation studies are critical.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Gelatinous zooplankton are increasingly acknowledged to contribute significantly to the carbon cycle worldwide, yet many taxa within this diverse group remain poorly studied. Here, we investigate the pelagic tunicate Pyrosoma atlanticum in the waters surrounding the Cabo Verde Archipelago. By using a combination of pelagic and benthic in situ observations, sampling, and molecular genetic analyses (barcoding, eDNA), we reveal that: P. atlanticum abundance is most likely driven by local island-induced productivity, that it substantially contributes to the organic carbon export flux and is part of a diverse range of biological interactions. Downward migrating pyrosomes actively transported an estimated 13% of their fecal pellets below the mixed layer, equaling a carbon flux of 1.96–64.55 mg C m−2 day−1. We show that analysis of eDNA can detect pyrosome material beyond their migration range, suggesting that pyrosomes have ecological impacts below the upper water column. Moribund P. atlanticum colonies contributed an average of 15.09 ± 17.89 (s.d.) mg C m−2 to the carbon flux reaching the island benthic slopes. Our pelagic in situ observations further show that P. atlanticum formed an abundant substrate in the water column (reaching up to 0.28 m2 substrate area per m2), with animals using pyrosomes for settlement, as a shelter and/or a food source. In total, twelve taxa from four phyla were observed to interact with pyrosomes in the midwater and on the benthos.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Gill parasites of coleoid cephalopods are frequently observed during remotely operated vehicle (ROV) dives in the Monterey Submarine Canyon. However, little knowledge exists on the identity of the parasite species or their effects on the cephalopod community. With the help of ROV-collected specimens and in situ footage from the past 27 years, we report on their identity, prevalence and potential infection strategy. Gill parasites were genetically and morphologically identified from collected specimens of Chiroteuthis calyx, Vampyroteuthis infernalis and Gonatus spp. In situ prevalence was estimated from video footage for C. calyx, Galiteuthis spp., Taonius spp. and Japetella diaphana, enabled by their transparent mantle tissue. The most common parasite was identified as Hochbergia cf. moroteuthensis, a protist of unresolved taxonomic ranking. We provide the first molecular data for this parasite and show a sister group relationship to the dinoflagellate genus Oodinium. Hochbergia cf. moroteuthensis was most commonly observed in adult individuals of all species and was sighted year round over the analyzed time period. In situ prevalence was highest in C. calyx (75%), followed by Galiteuthis spp. (29%), Taonius spp. (27%) and J. diaphana (7%). A second parasite, not seen on the in situ footage, but occurring within the gills of Gonatus berryi and Vampyroteuthis infernalis, could not be found in the literature or be identified through DNA barcoding. The need for further investigation is highlighted, making this study a starting point for unravelling ecological implications of the cephalopod-gill-parasite system in deep pelagic waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...