ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-19
    Description: Cold-water coral reefs and sponge grounds are deep-sea biological hotspots, equivalent to shallow-water tropical coral reefs. In tropical ecosystems, biodiversity and productivity are maintained through efficient recycling pathways, such as the sponge loop. In this pathway, encrusting sponges recycle dissolved organic matter (DOM) into particulate detritus. Subsequently, the sponge-produced detritus serves as a food source for other organisms on the reef. Alternatively, the DOM stored in massive sponges was recently hypothesized to be transferred to higher trophic levels through predation of these sponges, instead of detritus production. However, for deep-sea sponges, the existence of all prerequisite, consecutive steps of the sponge loop have not yet been established. Here, we tested whether cold-water deep-sea sponges, similar to their tropical shallow-water counterparts, take up DOM and transfer assimilated DOM to associated fauna via either detritus production or predation. We traced the fate of 13carbon (C)- and 15nitrogen (N)-enriched DOM and particulate organic matter (POM) in time using a pulse-chase approach. During the 24-h pulse, the uptake of 13C/15N-enriched DOM and POM by two deep-sea sponge species, the massive species Geodia barretti and the encrusting species Hymedesmia sp., was assessed. During the subsequent 9-day chase in label-free seawater, we investigated the transfer of the consumed food by sponges into brittle stars via two possible scenarios: (1) the production and subsequent consumption of detrital waste or (2) direct feeding on sponge tissue. We found that particulate detritus released by both sponge species contained C from the previously consumed tracer DOM and POM, and, after 9-day exposure to the labeled sponges and detritus, enrichment of 13C and 15N was also detected in the tissue of the brittle stars. These results therefore provide the first evidence of all consecutive steps of a sponge loop pathway via deep-sea sponges. We cannot distinguish at present whether the deep-sea sponge loop is acting through a detrital or predatory pathway, but conclude that both scenarios are feasible. We conclude that sponges could play an important role in the recycling of DOM in the many deep-sea ecosystems where they are abundant, although in situ measurements are needed to confirm this hypothesis.
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Regeneration is an essential process for all multicellular organisms, allowing them to recover effectively from internal and external injury. This process has been studied extensively in a medical context in vertebrates, with pathways often investigated mechanistically, both to derive increased understanding and as potential drug targets for therapy. Several species from other parts of the metazoan tree of life, including Hydra, planarians and echinoderms, noted for their regenerative capabilities, have previously been targeted for study. Less well-documented for their regenerative abilities are sponges. This is surprising, as they are both one of the earliest-branching extant metazoan phyla on Earth, and are rapidly able to respond to injury. Their sessile lifestyle, lack of an external protective layer, inability to respond to predation and filter-feeding strategy all mean that regeneration is often required. In particular the demosponge genus Halisarca has been noted for its fast cell turnover and ability to quickly adjust its cell kinetic properties to repair damage through regeneration. However, while the rate and structure of regeneration in sponges has begun to be investigated, the molecular mechanisms behind this ability are yet to be catalogued. Here we describe the assembly of a reference transcriptome for Halisarca caerulea, along with additional transcriptomes noting response to injury before, shortly following (2 h post-), and 12 h after trauma. RNAseq reads were assembled using Trinity, annotated, and samples compared, to allow initial insight into the transcriptomic basis of sponge regenerative processes. These resources are deep, with our reference assembly containing 〉 92.6% of the BUSCO Metazoa set of genes, and well-assembled (N50s of 836, 957, 1688 and 2032 for untreated, 2 h, 12 h and reference transcriptomes respectively), and therefore represent excellent qualitative resources as a bedrock for future study. The generation of transcriptomic resources from sponges before and following deliberate damage has allowed us to study particular pathways within this species responsible for repairing damage. We note particularly the involvement of the Wnt cascades in this process in this species, and detail the contents of this cascade, along with cell cycle, extracellular matrix and apoptosis-linked genes in this work. This resource represents an initial starting point for the continued development of this knowledge, given H. caerulea's ability to regenerate and position as an outgroup for comparing the process of regeneration across metazoan lineages. With this resource in place, we can begin to infer the regenerative capacity of the common ancestor of all extant animal life, and unravel the elements of regeneration in an often-overlooked clade.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...