ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • Elsevier  (3)
  • Frontiers Media
Collection
Publisher
Years
  • 1
    Publication Date: 2020-11-23
    Description: Highlights • We report on marine 3D Magnetotelluric study on Walvis Ridge • Derived 3D electrical resistivity model shows a large scale resistive zone, which we link to crustal extension due to local uplift. It might indicate the location where the hot-spot impinged on the crust prior to rifting • Smaller scale resistive region is attributed to magma ascent during rifting • Rift basin is identified by low resistivity region The Namibian continental margin marks the starting point of the Tristan da Cunha hotspot trail, the Walvis Ridge. This section of the volcanic southwestern African margin is therefore ideal to study the interaction of hotspot volcanism and rifting, which occurred in the late Jurassic/early Cretaceous. Offshore magnetotelluric data image electromagnetically the landfall of Walvis Ridge. Two large-scale high resistivity anomalies in the 3-D resistivity model indicate old magmatic intrusions related to hot-spot volcanism and rifting. The large-scale resistivity anomalies correlate with seismically identified lower crustal high velocity anomalies attributed to magmatic underplating along 2-D offshore seismic profiles. One of the high resistivity anomalies (above 500 Ωm) has three arms of approximately 100 km width and 300 km to 400 km length at 120 degree angles in the lower crust. One of the arms stretches underneath Walvis Ridge. The shape is suggestive of crustal extension due to local uplift. It might indicate the location where the hot-spot impinged on the crust prior to rifting. A second, smaller anomaly of 50 km width underneath the continent ocean boundary may be attributed to magma ascent during rifting. We attribute a low resistivity anomaly east of the continent ocean boundary and south of Walvis Ridge to the presence of a rift basin that formed prior to the rifting.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Highlights • The electrical structure beneath the Tristan da Cunha (TDC) hotspot was investigated. • Plume-like structure was not imaged beneath TDC by 3-D inversion analysis. • The plume may be small and/or weak or take place elsewhere outside of the study area. • Conductivity and bathymetry anomalies show a contrast across the TDC fracture zone. • Mantle temperature and melting process at ridge may cause the conductivity anomaly. Abstract The Tristan da Cunha (TDC) is a volcanic island located above a prominent hotspot in the Atlantic Ocean. Many geological and geochemical evidences support a deep origin of the mantle material feeding the hotspot. However, the existence of a plume has not been confirmed as an anomalous structure in the mantle resolved by geophysical data because of lack of the observations in the area. Marine magnetotelluric and seismological observations were conducted in 2012–2013 to examine the upper mantle structure adjacent to TDC. The electrical conductivity structure of the upper mantle beneath the area was investigated in this study. Three-dimensional inversion analysis depicted a high conductive layer at ~ 120 km depth but no distinct plume-like vertical structure. The conductive layer is mostly flat independently on seafloor age and bulges upward beneath the lithospheric segment where the TDC islands are located compared to younger segment south of the TDC Fracture Zone, while the bathymetry is rather deeper than prediction for the northern segment. The apparent inconsistency between the absence of vertical structure in this study and geochemical evidences on deep origin materials suggests that either the upwelling is too small and/or weak to be resolved by the current data set or that the upwelling takes place elsewhere outside of the study area. Other observations suggest that 1) the conductivity of the upper mantle can be explained by the fact that the mantle above the high conductivity layer is depleted in volatiles as the result of partial melting beneath the spreading ridge, 2) the potential temperature of the segments north of the TDC Fracture Zone is lower than that of the southern segment at least during the past ~ 30 Myr.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Highlights • Petrophysical joint inversion of MT, seismic and gravity for sub-basalt imaging • Use of adaptive coupling contraints result in a robust convergence behavior. • Adaptive coupling allows deviations from used parameter relationships in models. • Scheme is applied successfully on synthetic and real data examples. Abstract Joint inversion strategies for geophysical data have become increasingly popular as they allow for the efficient combination of complementary information from different data sets. The algorithm used for the joint inversion needs to be flexible in its description of the subsurface so as to be able to handle the diverse nature of the data. Hence, joint inversion schemes are needed that 1) adequately balance data from the different methods, 2) have stable convergence behavior, 3) consider the different resolution power of the methods used and 4) link the parameter models in a way that they are suited for a wide range of applications. Here, we combine active source seismic P-wave tomography, gravity and magnetotelluric (MT) data in a petrophysical joint inversion that accounts for these issues. Data from the different methods are inverted separately but are linked through constraints accounting for parameter relationships. An advantage of performing the inversions separately is that no relative weighting between the data sets is required. To avoid perturbing the convergence behavior of the inversions by the coupling, the strengths of the constraints are readjusted at each iteration. The criterion we use to control the adaption of the coupling strengths is based on variations in the objective functions of the individual inversions from one to the next iteration. Adaption of the coupling strengths makes the joint inversion scheme also applicable to subsurface conditions, where assumed relationships are not valid everywhere, because the individual inversions decouple if it is not possible to reach adequately low data misfits for the made assumptions. The coupling constraints depend on the relative resolutions of the methods, which leads to an improved convergence behavior of the joint inversion. Another benefit of the proposed scheme is that structural information can easily be incorporated in the petrophysical joint inversion (no additional terms are added in the objective functions) by using mutually controlled structural weights for the smoothing constraints. We test our scheme using data generated from a synthetic 2-D sub-basalt model. We observe that the adaption of the coupling strengths makes the convergence of the inversions very robust (data misfits of all methods are close to the target misfits) and that final results are always close to the true models independent of the parameter choices. Finally, the scheme is applied on real data sets from the Faroe-Shetland Basin to image a basaltic sequence and underlying structures. The presence of a borehole and a 3-D reflection seismic survey in this region allows direct comparison and, hence, evaluate the quality of the joint inversion results. The results from joint inversion are more consistent with results from other studies than the ones from the corresponding individual inversions and the shape of the basaltic sequence is better resolved. However, due to the limited resolution of the individual methods used it was not possible to resolve structures underneath the basalt in detail, indicating that additional geophysical information (e.g. CSEM, reflection onsets) needs to be included.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...