ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.03. Geodesy  (2)
  • Egu-Copernicus  (1)
  • INGV  (1)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2023-01-16
    Description: We study the time series of vertical ground displacements from continuous global navigation satellite system (GNSS) stations located in the European Alps. Our goal is to improve the accuracy and precision of vertical ground velocities and spatial gradients across an actively deforming orogen, investigating the spatial and temporal features of the displacements caused by non-tectonic geophysical processes. We apply a multivariate statistics-based blind source separation algorithm to both GNSS displacement time series and ground displacements modeled from atmospheric and hydrological loading, as obtained from global reanalysis models. This allows us to show that the retrieved geodetic vertical deformation signals are influenced by environment-related processes and to identify their spatial patterns. Atmospheric loading is the most important process, reaching amplitudes larger than 2 cm, but hydrological loading is also important, with amplitudes of about 1 cm, causing the peculiar spatial features of GNSS ground displacements: while the displacements caused by atmospheric and hydrological loading are apparently spatially uniform, our statistical analysis shows the presence of N–S and E–W displacement gradients. We filter out signals associated with non-tectonic deformation from the GNSS time series to study their impact on both the estimated noise and linear rates in the vertical direction. Taking into account the long time span of the time series considered in this work, while the impact of filtering on rates appears rather limited, the uncertainties estimated from filtered time series assuming a power law plus white noise model are significantly reduced, with an important increase in white noise contributions to the total noise budget. Finally, we present the filtered velocity field and show how vertical ground velocity spatial gradients are positively correlated with topographic features of the Alps.
    Description: Francesco Pintori has been supported by the project “Multiparametric and mUltiscale Study of Earthquake preparatory phase in the central and northern Apennines (MUSE)”, funded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Adriano Gualandi has been supported by European Research Council, H2020 Research Infrastructures (TECTONIC, grant no. 835012). This study has been developed in the framework of the projects MUSE and KINDLE, funded by the “Pianeta Dinamico” INGV institutional project.
    Description: Published
    Description: 1541–1567
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-01
    Description: The Global Navigation Satellite System (GNSS) represents a primary data source in Solid Earth Sciences. In order to investigate the Earth’s crustal deformation, time series of the estimated daily positions of the stations are routinely analyzed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) to investigate the deformation of the Earth’s surface caused by tectonic and non-tectonic processes. The GNSS observations of the stations are processed using the three main scientific software: GAMIT/GLOBK, BERNESE, and GIPSY OASIS II. The accuracy and the strength of geodetic solutions often depend on the geometry and spatial density of the network, and the availability and quality of GNSS data. In many circumstances, GNSS networks are deployed for topographic purposes by private or public institutions, and a significant number of GNSS stations in large regions acquire continuous observations. It may happen that such networks do not collect and distribute data according to IGS standards, so it could be difficult to analyze this data using automated data-processing tools. For that reason, this data is often ignored or partially used by the scientific community, despite their potential usefulness in geodynamic studies. We have attempted troubleshooting this problem by establishing a centralized storage facility in order to collect all available GNSS data and standardize both formats and metadata information. Here we describe the processes and functions that manage this unified repository, called MGA (Mediterranean GNSS Archive), which regularly collects GNSS RINEX files from alarge number of CORS (Continuously Operating Reference Station) located across a wide region of mainly the European and African plates. RINEX observation data and metadata information are provided to the analysts through an FTP server and dedicated web-services. The complete data set is stored in a PostgreSQL database in order to easily retrieve pieces of information and efficiently manage the archive content. The system implements many high-level services that include scripts to download files from remote archives and to detect new available data, web applications such as API (Application Program Interface) to interact with the system, and background services that interact with the database. During the development of this product, particular attention was paid to what has already been achieved by EPOS TCS WP10, whose objective was: "[...] to develop an open source platform with programmatic and web interfaces to store and disseminate raw data and metadata from GNSS stations operating in Europe''. Many ideas and tools presented here were inspired by that project.
    Description: Published
    Description: 1-18
    Description: 2T. Deformazione crostale attiva
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: 4IT. Banche dati
    Description: N/A or not JCR
    Keywords: RINEX ; GNSS ARCHIVE ; GNSS MEDITERRANEAN AREA ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...