ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-11-26
    Description: Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50-70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma-an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative 'druggable' targets may inform effective long-term treatment strategies. Here we expressed approximately 600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058384/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058384/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johannessen, Cory M -- Boehm, Jesse S -- Kim, So Young -- Thomas, Sapana R -- Wardwell, Leslie -- Johnson, Laura A -- Emery, Caroline M -- Stransky, Nicolas -- Cogdill, Alexandria P -- Barretina, Jordi -- Caponigro, Giordano -- Hieronymus, Haley -- Murray, Ryan R -- Salehi-Ashtiani, Kourosh -- Hill, David E -- Vidal, Marc -- Zhao, Jean J -- Yang, Xiaoping -- Alkan, Ozan -- Kim, Sungjoon -- Harris, Jennifer L -- Wilson, Christopher J -- Myer, Vic E -- Finan, Peter M -- Root, David E -- Roberts, Thomas M -- Golub, Todd -- Flaherty, Keith T -- Dummer, Reinhard -- Weber, Barbara L -- Sellers, William R -- Schlegel, Robert -- Wargo, Jennifer A -- Hahn, William C -- Garraway, Levi A -- CA134502/CA/NCI NIH HHS/ -- DP2 OD002750/OD/NIH HHS/ -- DP2 OD002750-01/OD/NIH HHS/ -- K08 CA115927/CA/NCI NIH HHS/ -- K08 CA115927-05/CA/NCI NIH HHS/ -- P50 CA093683/CA/NCI NIH HHS/ -- R01 CA134502/CA/NCI NIH HHS/ -- R33 CA128625/CA/NCI NIH HHS/ -- RC2 CA148268/CA/NCI NIH HHS/ -- England -- Nature. 2010 Dec 16;468(7326):968-72. doi: 10.1038/nature09627. Epub 2010 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107320" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Cell Line, Tumor ; Clinical Trials as Topic ; *Drug Resistance, Neoplasm/drug effects/genetics ; Enzyme Activation/drug effects ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene Library ; Humans ; Indoles/pharmacology/therapeutic use ; MAP Kinase Kinase Kinases/genetics/*metabolism ; *MAP Kinase Signaling System ; Melanoma/drug therapy/enzymology/genetics/metabolism ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/*metabolism ; Open Reading Frames/genetics ; Protein Kinase Inhibitors/pharmacology/therapeutic use ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins B-raf/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Proto-Oncogene Proteins c-raf/genetics/metabolism ; Sulfonamides/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-24
    Description: Medulloblastomas are the most common malignant brain tumours in children. Identifying and understanding the genetic events that drive these tumours is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma on the basis of transcriptional and copy number profiles. Here we use whole-exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas have low mutation rates consistent with other paediatric tumours, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were newly identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR and LDB1. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant, but not wild-type, beta-catenin. Together, our study reveals the alteration of WNT, hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic beta-catenin signalling in medulloblastoma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pugh, Trevor J -- Weeraratne, Shyamal Dilhan -- Archer, Tenley C -- Pomeranz Krummel, Daniel A -- Auclair, Daniel -- Bochicchio, James -- Carneiro, Mauricio O -- Carter, Scott L -- Cibulskis, Kristian -- Erlich, Rachel L -- Greulich, Heidi -- Lawrence, Michael S -- Lennon, Niall J -- McKenna, Aaron -- Meldrim, James -- Ramos, Alex H -- Ross, Michael G -- Russ, Carsten -- Shefler, Erica -- Sivachenko, Andrey -- Sogoloff, Brian -- Stojanov, Petar -- Tamayo, Pablo -- Mesirov, Jill P -- Amani, Vladimir -- Teider, Natalia -- Sengupta, Soma -- Francois, Jessica Pierre -- Northcott, Paul A -- Taylor, Michael D -- Yu, Furong -- Crabtree, Gerald R -- Kautzman, Amanda G -- Gabriel, Stacey B -- Getz, Gad -- Jager, Natalie -- Jones, David T W -- Lichter, Peter -- Pfister, Stefan M -- Roberts, Thomas M -- Meyerson, Matthew -- Pomeroy, Scott L -- Cho, Yoon-Jae -- CA050661/CA/NCI NIH HHS/ -- L40 NS063706/NS/NINDS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30 HD18655/HD/NICHD NIH HHS/ -- R01 CA030002/CA/NCI NIH HHS/ -- R01 CA105607/CA/NCI NIH HHS/ -- R01 CA109467/CA/NCI NIH HHS/ -- R01 CA148699/CA/NCI NIH HHS/ -- R01 CA154480/CA/NCI NIH HHS/ -- R01 NS046789/NS/NINDS NIH HHS/ -- R01CA105607/CA/NCI NIH HHS/ -- R01CA109467/CA/NCI NIH HHS/ -- R01CA148699/CA/NCI NIH HHS/ -- R25 NS070682/NS/NINDS NIH HHS/ -- R25NS070682/NS/NINDS NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54HG003067/HG/NHGRI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Aug 2;488(7409):106-10. doi: 10.1038/nature11329.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22820256" target="_blank"〉PubMed〈/a〉
    Keywords: Cerebellar Neoplasms/classification/*genetics ; Child ; DEAD-box RNA Helicases/chemistry/genetics/metabolism ; DNA Helicases/chemistry/genetics ; DNA-Binding Proteins/genetics ; Exome/*genetics ; Genome, Human/*genetics ; Hedgehog Proteins/metabolism ; Histone-Lysine N-Methyltransferase/genetics/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/genetics ; LIM Domain Proteins/genetics ; Medulloblastoma/classification/*genetics ; Models, Molecular ; Mutation/*genetics ; Neoplasm Proteins/genetics ; Nuclear Proteins/chemistry/genetics ; Promoter Regions, Genetic/genetics ; Protein Structure, Tertiary/genetics ; Proto-Oncogene Proteins/genetics ; Receptors, Cell Surface/genetics ; Repressor Proteins/genetics ; Signal Transduction ; TCF Transcription Factors/metabolism ; Transcription Factors/chemistry/genetics ; Tumor Suppressor Protein p53/genetics ; Wnt Proteins/metabolism ; beta Catenin/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...