ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-20
    Description: The importance of detecting possible electromagnetic signatures due to big earthquakes is self-evident, signatures which can be either anticipating, simultaneous or subsequent with respect to the main shock. Taking advantage of the present low Earth orbiting CHAMP satellite, we apply two “ad hoc” techniques both based on the Information Theory (after the seminal monograph by Shannon [1]) to the satellite magnetic data with the aim at extracting eventual time anomalies. These techniques have different time-space resolutions: the first technique requires a preliminary spherical harmonic analysis of daily magnetic data and, potentially, detects long-wavelength variations, while the second uses a preliminary wavelet analysis and can detect shorter-wavelength anomalies. Some examples are given for magnetic satellite data taken in correspondence with the two big earthquakes occurred in the Sumatra region on 26 December 2004 (M = 9.1) and 28 March 2005 (M = 8.6).
    Description: Published
    Description: Cambridge, UK, February 24-26, 2009
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: open
    Keywords: Earthquake precursors ; Magnetic field ; Satellite data ; Wavelet Analysis ; Shannon Entropy ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-29
    Description: Exploration of ocean seafloor is of paramount importance for a better understanding of the geodynamic evolution of our Planet. The pilot experiment of ORION-GEOSTAR 3 EC project was the first long-term continuous geophysical and oceanographic experiment of an important seafloor area of Southern Tyrrhenian Sea, the Marsili abyssal plain. The latter hosts the Marsili Seamount which is Europe’s one of the largest underwater volcano of Plio-Pleistocenic age. In spite of its dimensions, it is rather unknown about the present characteristics and activity. For this reason, we deployed a deep-sea observatory network, composed by two bottom observatories, on the seafloor at the base of the seamount at 3320 m b.s.l., in the period December 2003-May 2005. Some of the instruments on board the observatory were: broad-band seismometers, hydrophones, gravity meter, two magnetometers (scalar and vectorial), 3D single-point current meter, ADCP, CTD, automatic pH analyser and off-line water sampler for laboratory analyses. The first successful scientific objective was to obtain long-term continuous recordings under a unique time reference. The data analysis shows that they are generally of good quality and really continuous (only a few gaps). As a first step we performed a classification of seismic waveforms, a first inversion of magnetic variational data, and a first analysis of gravity meter, chemical and oceanographic data. Analysis of individual time series has shown interesting results, i.e. depth of the magnetic Moho under the Marsili, attenuation of recorded seismic body waves and clues of hydrothermal circulation. We show examples of the preliminary data analysis together with first results and comparisons among data coming from different sensors.
    Description: Published
    Description: Cambridge, UK, February 24-26, 2009
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 3.8. Geofisica per l'ambiente
    Description: open
    Keywords: Marsili Basin and Volcanic Seamount ; Exploration with seafloor observatories ; ORION-GEOSTAR 3 EC project ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    EGU - Copernicus Publications
    Publication Date: 2017-04-04
    Description: The present behaviour of the geomagnetic field as expressed by the International Geomagnetic Reference Field (IGRF) deserves special attention when compared with that shown over the past few thousands of years by two paleomagnetic/archeomagnetic models, CALS3K and CALS7K. The application of the Information theory in terms of Shannon Information and K-entropy to these models shows characteristics of an instable geomagnetic field. Although the result is mitigated when we correct the CALS7K model for its typical spectral damping, the present geomagnetic field as represented by IGRF is still rather distinct, at least for the past 4000 years, a result that is further confirmed by the CALS3K model. This is consistent with a significant global critical state started at around 1750, and still present, characterised by significant decays of the geomagnetic dipole, energy and Shannon information and high K-entropy. The details of how these characteristics may develop are not clear, since the present state could move toward an excursion or a geomagnetic polarity reversal, but we cannot exclude the possibility that the “critical” behaviour will become again more “normal”, stopping the apparent trend of the recent geomagnetic field decay.
    Description: Published
    Description: 77-84
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: Shannon Information ; Geomagnetic Field ; Global Geomagnetic Models ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional models ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...