ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysical Research Abstracts  (5)
  • EGU  (3)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: The existence of a relationship between regional seismicity and changes in volcanic activity has been the subject of several studies in the last years. Generally, activity in basaltic volcanoes such as Villarica (Chile) and Tungurahua (Ecuador) shows very little changes after the occurrence of regional earthquakes. In a few cases volcanic activity has changed before the occurrence of regional earthquakes, such as observed at Teide, Tenerife, in 2004 and 2005 (Tárraga et al., 2006). In this paper we explore the possible link between regional seismicity and changes in volcanic activity at Mt. Etna in 2006 and 2007. On 24 November, 2006 at 4:37:40 GMT an earthquake of magnitude 4.7 stroke the eastern coast of Sicily. The epicenter was localized 50 km SE of the south coast of the island, and at about 160 km from the summit craters of Mt. Etna. The SSEM (Spectral Seismic Energy Measurement) of the seismic signal at stations at 1 km and 6 km from the craters highlights that four hours before this earthquake the energy associated with volcanic tremor increased, reached a maximum, and finally became steady when the earthquake occurred. Conversely, neither before nor after the earthquake, the SSEM of stations located between 80 km and 120 km from the epicentre and outside the volcano edifice showed changes. On 5 September, 2007 at 21:24:13 GMT an earthquake of magnitude 3.2 and 7.9 km depth stroke the Lipari Island, at the north of Sicily. About 38 hours before the earthquake occurrence, there was an episode of lava fountain lasting 20 hours at Etna volcano. The SSEM of the seismic signal recorded during the lava fountain at a station located at 6 km from the craters highlights changes heralding this earthquake ten hours before its occurrence using the FFM method (e.g., Voight, 1988; Ortiz et al., 2003). A change in volcanic activity – with the onset of ash emission and Strombolian explosions – was observed a couple of hours before the occurrence of the regional earthquakes. It can be interpreted as the magmatic response to a change of the distribution of tectonic stress in the edifice before the earthquake. In the light of this hypothesis, we surmise that the magmatic system behaved similar to a dilatometer and promise news lines to forecasting the volcano activity.
    Description: EGU
    Description: Published
    Description: Vienna (Austria)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: open
    Keywords: VOLCANIC ACTIVITY ; TREMOR ; EARTHQUAKE ; SSEM ; FAILURE FORECAST METHOD ; ETNA ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The monitoring of the seismic background signal – commonly referred to as volcanic tremor - has become a key tool for volcanic surveillance, particularly when field surveys are unsafe and/or visual observations are hampered by bad weather conditions. Indeed, it could be demonstrated that changes in the state of activity of the volcano show up in the volcanic tremor signature, such as amplitude and frequency content. Hence, the analysis of the characteristics of volcanic tremor leads us to pass from a mere monoparametric vision of the data to a multivariate one, which can be tackled with modern concepts of multivariate statistics. For this aim we present a recently developed software package which combines various concepts of unsupervised classification, in particular cluster analysis and Kohonen maps. Unsupervised classification is based on a suitable definition of similarity between patterns rather than on a-priori knowledge of their class membership. It aims at the identification of heterogeneities within a multivariate data set, thus permitting to focalize critical periods where significant changes in signal characteristics are encountered. The application of the software is demonstrated on sample sets derived from Mt. Etna during eruptions in 2001, 2006 and 2007-8.
    Description: EGU
    Description: Published
    Description: Vienna (Austria)
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: PATTERN CLASSIFICATION ; TREMOR ; KOHONEN MAP ; CLUSTER ANALYSIS ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Mt Etna in Sicily is among the most intensely monitored and studied volcanoes on Earth due to its very frequent activity, and its location in a densely populated area. Through a sophisticated monitoring system run by the Istituto Nazionale di Geofisica e Vulcanologia - Osservatorio Etneo (INGV-OE), scientists are gaining every day and in real time a picture of the state of volcanic activity of Etna. During the spring of 2007, various episodes of paroxysmal activity occurred at the South-East Crater, one of the four summit craters of Mt Etna. These episodes were always associated with a sharp increase in the amplitude of the volcanic tremor as well as changes in the spectral characteristics of this signal. Eruptive activity ranged from strong Strombolian explosions to lava fountains coupled with copious emission of lava flows and tephra. During inter-eruptive periods, recurrent seismic unrest episodes were observed in form of both temporary enhancements of the volcanic tremor amplitude as well as changes of spectral characteristics. These changes often triggered the automatic alert systems in the operation room of the INGV-OE, even though not being followed by manifest eruptive activity at the surface. The influence of man-made or meteorologically induced noise could be ruled out as a cause for the alarms. We therefore performed a multiparametric analysis of these inter-eruptive periods by integrating seismic volcanic tremor, in-soil radon, plume SO2 flux and thermal data, discussing the potential volcano-dependent source of these episodes. Short-term changes were investigated applying pattern classification, in particular Kohonen Maps and fuzzy clustering, simultaneously on volcanic tremor, radon and ambient parameters (pressure and temperature). The well established SO2 flux and thermal radiation data were used as the “smoking gun”, for certifying that the observed changes in seismic and in radon data can be considered as volcanogenic. Our results unveil ‘failed’ eruptions between February and April 2007 that are explained as ascending magma batches, which triggered repeated episodes of gas pulses and rock fracturing, but that failed to reach the surface.
    Description: Published
    Description: San Francisco, California, USA
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: open
    Keywords: Volcano monitoring, Volcanic gases, Data analysis: algorithms and implementation ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In spring 2007, a sequence of paroxysmal episodes took place at the Southeast Crater of Mt. Etna, Italy. Eruptive activity, characterised by Strombolian explosions, lava fountains, emission of lava flows and tephra, were all associated with an outstanding increase in the amplitude of volcanic tremor. In periods of quiescence between the eruptive episodes, recurring phases of seismic unrest were observed in forms of small temporary enhancements of the volcanic tremor amplitude, even though none of them culminated in eruptive activity. Here, we present the results of an integrated geophysical and geochemical data analysis encompassing records of volcanic tremor, thermal data, plume SO2 flux and radon over two months.We conclude that between February and April 2007, magma triggered repeated episodes of gas pulses and rock fracturing, but failed to reach the surface. Our multidisciplinary study allowed us to unveil these ‘aborted’ eruptions by investigating the long-temporal evolution of gas measurements along with seismic radiation. Short-term changes were additionally highlighted using a method of pattern classification based on Kohonen Maps and Fuzzy Clustering applied to volcanic tremor and radon data.
    Description: Published
    Description: Vienna, Austria
    Description: open
    Keywords: Mt. Etna, volcanic tremor, gas emission, thermal images, multidisciplinary study ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Dynamic and evolution of magma in the plumbing system are key aspects in the evaluation of volcanic hazard. Eruptive phenomena involve indeed processes of magma upraise and storage, which may change in time and space, and mirror in the composition of volcanic products. In this study, we analyze the pattern of geochemical variations at Etna, Italy, from 1995 to 2013. In this time span, volcanic activity affected all the four craters close to the summit of the volcano (located at about 3300 m above the sea level), and fed eruptive fissures along its upper flanks. In addition, a new crater formed and rapidly built up, giving rise to spectacular lava fountains from 2011 on. Based on a dataset containing the geochemical composition of volcanic products collected over 18 years, we explored the application of data mining methods in the framework of the European MEDiterrranean Supersite Volcanoes (MED­SUV) project. In the present application, we discuss the relationships among the composition of volcanic products sampled from all the afore-mentioned eruptive centers. Our results highlight differences in magma evolution, dynamic and eruptive style even within a single eruptive center.
    Description: Published
    Description: Vienna, Austria
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: open
    Keywords: geochemical composition ; volcanic products ; pattern classification ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We analyze in-soil radon (Rn) emission and ambient parameters (barometric pressure and air temperature measurements) along with seismic activity during the longest flank eruption of this century at Mt. Etna, Italy. This eruption occurred between 14 May 2008 and 6 July 2009, from a N120-140°E eruptive fissure extending between 3050 and 2620 m above sea level. It was heralded by a short-lived (~5 hours) episode of lava fountaining three days before a dike‐forming intrusion fed a lava emission, which affected the summit area of the volcano over ~15 months. The peculiar position of the station for the Rn measurement, which was at an altitude of 2950 m above sea level and near (~1 km) the summit active craters, offered us the uncommon chance: i) to explore the temporal development of the gas emission close (〈2 km) to the 2008-2009 eruptive vents in the long term, and ii) to analyze the relationship between in-soil Rn fluxes and seismic signals (in particular, local earthquakes and volcanic tremor) during the uninterrupted lava emission. This approach reveals important details about the recharging phases characterizing the 2008-2009 eruption, which are not visible with other methods of investigation. Our study benefitted from the application of methods of pattern classification developed in the framework of the European MEDiterrranean Supersite Volcanoes (MED­SUV) project.
    Description: MED-SUV project
    Description: Published
    Description: Vienna, Austria
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: open
    Keywords: Radon measurements ; seismic activity ; volcanic monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: In the framework of the European MEDiterrranean Supersite Volcanoes (MEDSUV) project, Mt. Etna (Italy) and Piton de la Fournaise (La Réunion) were chosen as “European Supersite Demonstrator” and test site, respectively, to promote the transfer and implementation of efficient tools for the identification of impending volcanic activity. Both are “open-conduit volcanoes”, forming ideal sites for the test and validation of innovative concepts, which can contribute to minimize volcanic hazard. OneoftheaimsoftheMED-SUVprojectwasthedevelopmentofsoftwareformachinelearningapplicabletodata processing for early-warning purposes. Near-real time classification of continuous seismic data stream has been carried out in the control room of INGV Osservatorio Etneo since 2010. Subsequently, automatic alert procedures were activated. In the light of the excellent results for the 24/7 surveillance of Etna, we examine the portability of tools developed in the framework of the project when applied to seismic data recorded at Piton de la Fournaise. In the present application to data recorded at Piton de la Fournaise, the classifier aims at highlighting changes in the frequency content of the background seismic signal heralding the activation of the volcanic source and the imminent eruption. We describe the preliminary results of this test on a set of data of nearly two years starting on January 2014. This period follows three years of inactivity and deflation of the volcano and marks a renewal of thevolcanoactivity withinflation,deep seismicity (-7kmbsl) andfive eruptions with fountains and lava flowsthat lasted from a few hours to more than two months. We discuss here the necessary tuning for the implementation of the software to the new dataset analyzed. We also propose a comparison with the results of pattern classification regarding recent eruptive activity at Etna.
    Description: Published
    Description: Vienna (Austria)
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: open
    Keywords: seismic signals ; Piton de la Fournaise ; Etna ; data processing ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-11-29
    Description: The project KnowRISK (Know your city, Reduce seISmic risK through non-structural elements) is financed by the European Commission to develop prevention measures that may reduce non-structural damage in urban areas. Pilot areas of the project are within the three European participating countries, namely Portugal, Iceland and Italy. Non-structural components of a building include all those components that are not part of the structural system, more specifically the architectural, mechanical, electrical, and plumbing systems, as well as furniture, fixtures, equipment, and contents. Windows, partitions, granite veneer, piping, ceilings, air conditioning ducts and equipment, elevators, computer and hospital equipment, file cabinets, and retail merchandise are all examples of nonstructural components that are vulnerable to earthquake damage. We will use the experience gained during past earthquakes, which struck in particular Iceland, Italy and Portugal (Azores). Securing the non-structural elements improves the safety during an earthquake and saves lives. This paper aims at identifying non-structural seismic protection measures in the pilot areas and to develop a portfolio of good practices for the most common and serious non-structural vulnerabilities. This systematic identification and the portfolio will be achieved through a “crossknowledge” strategy based on previous researches, evidence of non-structural damage in past earthquakes. Shake table tests of a group of non-structural elements will be performed. These tests will be filmed and, jointly with portfolio, will serve as didactic supporting tools to be used in workshops with building construction stakeholders and in risk communication activities. A Practical Guide for non-structural risk reduction will be specifically prepared for citizens on the basis of the outputs of the project, taking into account the local culture and needs of each participating country
    Description: Published
    Description: Vienna
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: restricted
    Keywords: damage ; non-structural elements ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...